IDEAS home Printed from https://ideas.repec.org/a/eee/enscpo/v64y2016icp101-117.html
   My bibliography  Save this article

Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo

Author

Listed:
  • Saraswat, Chitresh
  • Kumar, Pankaj
  • Mishra, Binaya Kumar

Abstract

As human history is changing on many fronts, it is appropriate for us to understand the different perspectives of major global challenges, of which, water is a major priority. The water resources in urban areas are either approaching or exceeding the limits of sustainable use at alarming rates. Groundwater table depletion and increasing flood events can be easily realized in rapidly developing urban areas. It is necessary to improve existing water management systems for high-quality water and reduced hydro-meteorological disasters, while preserving our natural/pristine environment in a sustainable manner. This can be achieved through optimal collection, infiltration and storage of stormwater. Stormwater runoff is rainfall that flows over the ground surface; large volumes of water are swiftly transported to local water bodies and can cause flooding, coastal erosion, and can carry many different pollutants that are found on paved surfaces. Sustainable stormwater management is desired, and the optimal capture measure is explored in the paper. This study provides commentary to assist policy makers and researchers in the field of stormwater management planning to understand the significance and role of remote sensing and GIS in designing optimal capture measures under the threat of future extreme events and climate change. Community attitudes, which are influenced by a range of factors, including knowledge of urban water problem, are also considered. In this paper, we present an assessment of stormwater runoff management practices to achieve urban water security. For this purpose, we explored different characteristics of stormwater runoff management policies and strategies adopted by Japan, Vietnam and Thailand. This study analyses the abilities of Japanese, Vietnamese and Thai stormwater runoff management policies and measures to manage water scarcity and achieve water resiliency. This paper presents an overview of stormwater runoff management to guide future optimal stormwater runoff measures and management policies within the governance structure. Additionally, the effects of different onsite facilities, including those for water harvesting, reuse, ponds and infiltration, are explored to establish adaptation strategies that restore water cycle and reduce climate change-induced flood and water scarcity on a catchment scale.

Suggested Citation

  • Saraswat, Chitresh & Kumar, Pankaj & Mishra, Binaya Kumar, 2016. "Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo," Environmental Science & Policy, Elsevier, vol. 64(C), pages 101-117.
  • Handle: RePEc:eee:enscpo:v:64:y:2016:i:c:p:101-117
    DOI: 10.1016/j.envsci.2016.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1462901116303501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.envsci.2016.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    2. Wafaa Ali & Husna Takaijudin & Khamaruzaman Wan Yusof & Manal Osman & Abdurrasheed Sa’id Abdurrasheed, 2021. "The Common Approaches of Nitrogen Removal in Bioretention System," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    3. Buddhi Wijesiri & Erick Bandala & An Liu & Ashantha Goonetilleke, 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    4. Yan Tu & Kai Chen & Huayi Wang & Zongmin Li, 2020. "Regional Water Resources Security Evaluation Based on a Hybrid Fuzzy BWM-TOPSIS Method," IJERPH, MDPI, vol. 17(14), pages 1-24, July.
    5. Shokhrukh-Mirzo Jalilov & Mohamed Kefi & Pankaj Kumar & Yoshifumi Masago & Binaya Kumar Mishra, 2018. "Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    6. Manal Osman & Khamaruzaman Wan Yusof & Husna Takaijudin & Hui Weng Goh & Marlinda Abdul Malek & Nor Ariza Azizan & Aminuddin Ab. Ghani & Abdurrasheed Sa’id Abdurrasheed, 2019. "A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    7. Bello, Al-Amin Danladi & Haniffah, Mohd Ridza Mohd, 2021. "Modelling the effects of urbanization on nutrients pollution for prospective management of a tropical watershed: A case study of Skudai River watershed," Ecological Modelling, Elsevier, vol. 459(C).
    8. Sado-Inamura, Yukako & Fukushi, Kensuke, 2019. "Empirical analysis of flood risk perception using historical data in Tokyo," Land Use Policy, Elsevier, vol. 82(C), pages 13-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enscpo:v:64:y:2016:i:c:p:101-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/environmental-science-and-policy/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.