IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1563-1568.html
   My bibliography  Save this article

Heat capacity ratio and the best type of heat exchanger for geothermal water providing maximum heat transfer

Author

Listed:
  • Ağra, Özden
  • Erdem, Hasan Hüseyin
  • Demir, Hakan
  • Atayılmaz, Ş. Özgür
  • Teke, İsmail

Abstract

Geothermal water is generally used for heating another fluid and therefore heat transfer between these fluids must be as high as possible. For heat exchangers, heat transfer per unit temperature difference and heat capacity is defined by effectiveness of heat exchanger (ε) and capacity ratio of hot and cold streams (Cr). Effectiveness of heat exchanger decreases as capacity ratio increases. Therefore, it is desired to maximize the multiplication of effectiveness and capacity ratio to maximize heat transfer. A new model was suggested for the determination of the heat capacity ratio that provides the maximum heat transfer and best type of heat exchanger. Maximum heat transfer occurs when capacity ratio is unity and therefore ε*Cr curves given as a function of NTU (number of transfer units) for Cr = 1 for various heat exchanger types. Also, the best type of heat exchanger giving maximum heat transfer can be determined using ε*Cr curves for geothermal applications.

Suggested Citation

  • Ağra, Özden & Erdem, Hasan Hüseyin & Demir, Hakan & Atayılmaz, Ş. Özgür & Teke, İsmail, 2015. "Heat capacity ratio and the best type of heat exchanger for geothermal water providing maximum heat transfer," Energy, Elsevier, vol. 90(P2), pages 1563-1568.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1563-1568
    DOI: 10.1016/j.energy.2015.06.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dagdas, Ahmet, 2007. "Heat exchanger optimization for geothermal district heating systems: A fuel saving approach," Renewable Energy, Elsevier, vol. 32(6), pages 1020-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Sandali, Messaoud & Boubekri, Abdelghani & Mennouche, Djamel & Gherraf, Noureddine, 2019. "Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study," Renewable Energy, Elsevier, vol. 135(C), pages 186-196.
    3. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teke, Ismail & Ağra, Özden & Demir, Hakan & Atayılmaz, Ş. Özgür, 2014. "Sizing, selection, and comparison of heat exchangers considering the lowest saving-investment ratio corresponding to the area at the tag end of the heat exchanger," Energy, Elsevier, vol. 78(C), pages 114-121.
    2. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.
    3. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    4. Hajjaji, Noureddine & Pons, Marie-Noëlle & Houas, Ammar & Renaudin, Viviane, 2012. "Exergy analysis: An efficient tool for understanding and improving hydrogen production via the steam methane reforming process," Energy Policy, Elsevier, vol. 42(C), pages 392-399.
    5. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    6. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    7. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    8. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1563-1568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.