IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp1-13.html
   My bibliography  Save this article

Heat recovery and heat pumping opportunities in a slaughterhouse

Author

Listed:
  • Ashrafi, Omid
  • Bédard, Serge
  • Bakhtiari, Bahador
  • Poulin, Bruno

Abstract

Pinch analysis was employed to recover and reuse a part of the waste energy during the production and cleaning periods of a slaughterhouse in Canada. The INTEGRATION software was used to find possible options for HR (heat recovery). Several HR opportunities were identified in various systems of the slaughterhouse including boilers, hot water production, singeing, refrigeration, and barn air heating. A recommendation was also made to store more energy in the form of hot water. Opportunities for using heat pumps for additional HR were also investigated. The proposed projects can significantly reduce natural gas consumption in the steam and hot water boilers as well as in the air heating systems. It is shown that the proposed projects can reduce natural gas use by approximately half a million dollars per year.

Suggested Citation

  • Ashrafi, Omid & Bédard, Serge & Bakhtiari, Bahador & Poulin, Bruno, 2015. "Heat recovery and heat pumping opportunities in a slaughterhouse," Energy, Elsevier, vol. 89(C), pages 1-13.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1-13
    DOI: 10.1016/j.energy.2015.05.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
    2. Kapustenko, Petro O. & Ulyev, Leonid M. & Boldyryev, Stanislav A. & Garev, Andrey O., 2008. "Integration of a heat pump into the heat supply system of a cheese production plant," Energy, Elsevier, vol. 33(6), pages 882-889.
    3. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    2. Ashrafi, Omid & Navarri, Philippe & Hughes, Robin & Lu, Dennis, 2016. "Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant," Energy, Elsevier, vol. 111(C), pages 981-990.
    3. He, Yijian & Gao, Xu & Chen, Qifei & Chen, Guangming, 2020. "Study on the performance of a novel waste heat recovery system at low temperatures," Energy, Elsevier, vol. 202(C).
    4. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    5. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    6. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).
    7. Fu, Chao & Gundersen, Truls, 2016. "Correct integration of compressors and expanders in above ambient heat exchanger networks," Energy, Elsevier, vol. 116(P2), pages 1282-1293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashrafi, Omid & Navarri, Philippe & Hughes, Robin & Lu, Dennis, 2016. "Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant," Energy, Elsevier, vol. 111(C), pages 981-990.
    2. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    3. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    4. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    5. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    6. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    7. Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
    8. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    9. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    10. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    11. Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
    12. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    13. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    14. Du, Shuai & Xu, Zhenyuan & Wang, Ruzhu & Yang, Chun, 2024. "Development of direct seawater-cooled LiBr–H2O absorption chiller and its application in industrial waste heat utilization," Energy, Elsevier, vol. 294(C).
    15. Arsenyeva, Olga P. & Tovazhnyansky, Leonid L. & Kapustenko, Petro O. & Khavin, Gennadiy L., 2011. "Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries," Energy, Elsevier, vol. 36(8), pages 4588-4598.
    16. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    17. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    18. Du, S. & Wang, R.Z., 2019. "A unified single stage ammonia-water absorption system configuration with producing best thermal efficiencies for freezing, air-conditioning and space heating applications," Energy, Elsevier, vol. 174(C), pages 1039-1048.
    19. Sadeghian Jahromi, Farid & Beheshti, Masoud, 2017. "An extended energy saving method for modification of MTP process heat exchanger network," Energy, Elsevier, vol. 140(P1), pages 1059-1073.
    20. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.