IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp351-357.html
   My bibliography  Save this article

Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis

Author

Listed:
  • Toscano, G.
  • Duca, D.
  • Rossini, G.
  • Mengarelli, C.
  • Pizzi, A.

Abstract

In the renewable energy production solid biomass has became one of the most important source for power and heat generation, in particular woody materials in the form of wood chips, pellet and briquette. Technical standards on solid biofuels require information about origin and source of the biomass, differentiating for example between coniferous and broadleaf. In this work different wood samples were classified employing a method based on thermogravimetric analysis followed by Principal Component Analysis and Soft Independent Modeling of Class Analogy as supervised pattern recognition method.

Suggested Citation

  • Toscano, G. & Duca, D. & Rossini, G. & Mengarelli, C. & Pizzi, A., 2015. "Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis," Energy, Elsevier, vol. 83(C), pages 351-357.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:351-357
    DOI: 10.1016/j.energy.2015.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    2. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Liu, Hao & Li, Mi & Zhao, Shuna & Mensah, Rhoda Afriyie & Das, Oisik & Jiang, Lin & Xu, Qiang, 2023. "Insights into wood species and aging effects on pyrolysis characteristics and combustion model by multi kinetics methods and model constructions," Renewable Energy, Elsevier, vol. 206(C), pages 784-794.
    3. Tang, Yong & Chen, Yulin & He, Youwei & Yu, Guangming & Guo, Xifeng & Yang, Qing & Wang, Yong, 2021. "An improved system for evaluating the adaptability of natural gas flooding in enhancing oil recovery considering the miscible ability," Energy, Elsevier, vol. 236(C).
    4. Duca, D. & Mancini, M. & Rossini, G. & Mengarelli, C. & Foppa Pedretti, E. & Toscano, G. & Pizzi, A., 2016. "Soft Independent Modelling of Class Analogy applied to infrared spectroscopy for rapid discrimination between hardwood and softwood," Energy, Elsevier, vol. 117(P1), pages 251-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    2. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    3. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    4. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    5. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    6. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    7. Dafnomilis, Ioannis & Hoefnagels, Ric & Pratama, Yudistira W. & Schott, Dingena L. & Lodewijks, Gabriel & Junginger, Martin, 2017. "Review of solid and liquid biofuel demand and supply in Northwest Europe towards 2030 – A comparison of national and regional projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 31-45.
    8. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    9. Sher, Farooq & Pans, Miguel A. & Afilaka, Daniel T. & Sun, Chenggong & Liu, Hao, 2017. "Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles," Energy, Elsevier, vol. 141(C), pages 2069-2080.
    10. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    11. Venturini, Elisa & Vassura, Ivano & Zanetti, Cristian & Pizzi, Andrea & Toscano, Giuseppe & Passarini, Fabrizio, 2015. "Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove," Energy, Elsevier, vol. 88(C), pages 650-657.
    12. Pizzi, A. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Mancini, M. & Toscano, G., 2018. "Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects," Renewable Energy, Elsevier, vol. 121(C), pages 513-520.
    13. Miguel Pérez de Arce and Enzo Sauma, 2016. "Comparison of Incentive Policies for Renewable Energy in an Oligopolistic Market with Price-Responsive Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    15. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    16. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    17. Pietro Pandolfi & Ivan Notardonato & Sergio Passarella & Maria Pia Sammartino & Giovanni Visco & Paolo Ceci & Loretta De Giorgi & Virgilio Stillittano & Domenico Monci & Pasquale Avino, 2023. "Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach," IJERPH, MDPI, vol. 20(16), pages 1-14, August.
    18. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    19. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    20. Ahmad Rashedi & Irfan Ullah Muhammadi & Rana Hadi & Syeda Ghufrana Nadeem & Nasreen Khan & Farzana Ibrahim & Mohamad Zaki Hassan & Taslima Khanam & Byongug Jeong & Majid Hussain, 2022. "Characterization and Life Cycle Exergo-Environmental Analysis of Wood Pellet Biofuel Produced in Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:351-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.