IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp180-183.html
   My bibliography  Save this article

Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

Author

Listed:
  • Choi, Wonchul
  • Jun, Dongseok
  • Kim, Soojung
  • Shin, Mincheol
  • Jang, Moongyu

Abstract

Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions.

Suggested Citation

  • Choi, Wonchul & Jun, Dongseok & Kim, Soojung & Shin, Mincheol & Jang, Moongyu, 2015. "Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon," Energy, Elsevier, vol. 82(C), pages 180-183.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:180-183
    DOI: 10.1016/j.energy.2015.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akram I. Boukai & Yuri Bunimovich & Jamil Tahir-Kheli & Jen-Kan Yu & William A. Goddard III & James R. Heath, 2008. "Silicon nanowires as efficient thermoelectric materials," Nature, Nature, vol. 451(7175), pages 168-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jong-Pil Im & Jeong Hun Kim & Jae Woo Lee & Ji Yong Woo & Sol Yee Im & Yeriaron Kim & Yong-Sung Eom & Won Chul Choi & Jun Soo Kim & Seung Eon Moon, 2020. "Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application," Energies, MDPI, vol. 13(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    2. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    3. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    4. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    5. Kevin Bethke & Virgil Andrei & Klaus Rademann, 2016. "Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.
    6. Seunggen Yang & Kyoungah Cho & Sangsig Kim, 2020. "Enhanced Thermoelectric Characteristics of Ag 2 Se Nanoparticle Thin Films by Embedding Silicon Nanowires," Energies, MDPI, vol. 13(12), pages 1-10, June.
    7. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.
    8. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    9. Massaguer, E. & Massaguer, A. & Montoro, L. & Gonzalez, J.R., 2014. "Development and validation of a new TRNSYS type for the simulation of thermoelectric generators," Applied Energy, Elsevier, vol. 134(C), pages 65-74.
    10. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    11. Nguyen T. Hung & Ahmad R. T. Nugraha & Riichiro Saito, 2019. "Thermoelectric Properties of Carbon Nanotubes," Energies, MDPI, vol. 12(23), pages 1-27, November.
    12. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    13. Zhukovsky, K.V. & Srivastava, H.M., 2017. "Analytical solutions for heat diffusion beyond Fourier law," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 423-437.
    14. Karalis, George & Tzounis, Lazaros & Lambrou, Eleftherios & Gergidis, Leonidas N. & Paipetis, Alkiviadis S., 2019. "A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    16. Ghomian, Taher & Mehraeen, Shahab, 2019. "Survey of energy scavenging for wearable and implantable devices," Energy, Elsevier, vol. 178(C), pages 33-49.
    17. Kria, M. & Feddi, K. & Aghoutane, N. & El-Yadri, M. & Pérez, L.M. & Laroze, D. & Dujardin, F. & Feddi, E., 2020. "Thermodynamic properties of SnO2/GaAs core/shell nanofiber," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
    19. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    20. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:180-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.