IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v79y2015icp228-234.html
   My bibliography  Save this article

Propulsive performance of a pulse detonation rocket engine without the purge process

Author

Listed:
  • Wang, Ke
  • Fan, Wei
  • Lu, Wei
  • Zhang, Qibin
  • Chen, Fan
  • Yan, Chuanjun
  • Xia, Qiang

Abstract

To measure the propulsive performance of a high-frequency PDRE (pulse detonation rocket engine), an experimental facility was established. Utilizing the valveless mode, the PDRE was operated without the purge process at a maximum operating frequency of 110 Hz successfully. In this study, oxygen-enriched air instead of oxygen was utilized as oxidizer and liquid gasoline was used as fuel because its vaporization would cool the hot combustion products, which would create a buffer zone and ensure stable operation without the purge process. The thrust under a wide range of operating frequencies was obtained including over and partially filled cases. Based on the results of partially filled conditions, one empirical formula for the partial fill effect was developed. In addition, analysis was carried out which resulted in a quite similar equation. Therefore, a partial fill model for the valveless PDRE without the purge process was obtained. Finally, comparisons between the proposed model and other models developed in traditional operations were performed.

Suggested Citation

  • Wang, Ke & Fan, Wei & Lu, Wei & Zhang, Qibin & Chen, Fan & Yan, Chuanjun & Xia, Qiang, 2015. "Propulsive performance of a pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 79(C), pages 228-234.
  • Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:228-234
    DOI: 10.1016/j.energy.2014.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Qiaofeng & Wen, Haocheng & Li, Weihong & Ji, Zifei & Wang, Bing & Wolanski, Piotr, 2018. "Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition," Energy, Elsevier, vol. 151(C), pages 408-419.
    2. Wang, Ke & Wang, Zhicheng & Zhao, Minghao & Sun, Tianyu & Tan, Fengguang & Zhu, Yiyuan & Lu, Wei & Yu, Xiaodong & Sha, Yu & Fan, Wei, 2019. "Study on the valveless and purgeless scheme to produce high frequency detonations in a long duration," Energy, Elsevier, vol. 189(C).
    3. Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.
    4. Peng, Hao-Yang & Liu, Wei-Dong & Liu, Shi-Jie & Zhang, Hai-Long & Jiang, Lu-Xin, 2020. "Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber," Energy, Elsevier, vol. 211(C).
    5. Liu, Junyu & Wang, Zhiwu & Qin, Weifeng & Li, Junlin & Zhang, Zixu & Huang, Jingjing, 2023. "Effects of detonation initial conditions on performance of pulse detonation chamber-axial turbine combined system," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Fengguang & Fan, Wei & Wang, Ke & Jin, Shufeng & Chen, Shuping, 2023. "Initiation of an upstream propagating detonation wave near the open end of the detonation tube operating in the valveless and purgeless scheme," Energy, Elsevier, vol. 264(C).
    2. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    3. Liu, Junyu & Wang, Zhiwu & Qin, Weifeng & Li, Junlin & Zhang, Zixu & Huang, Jingjing, 2023. "Effects of detonation initial conditions on performance of pulse detonation chamber-axial turbine combined system," Energy, Elsevier, vol. 278(PA).
    4. Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.
    5. Peng, Hao-Yang & Liu, Wei-Dong & Liu, Shi-Jie & Zhang, Hai-Long & Jiang, Lu-Xin, 2020. "Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber," Energy, Elsevier, vol. 211(C).
    6. Wang, Ke & Wang, Zhicheng & Zhao, Minghao & Sun, Tianyu & Tan, Fengguang & Zhu, Yiyuan & Lu, Wei & Yu, Xiaodong & Sha, Yu & Fan, Wei, 2019. "Study on the valveless and purgeless scheme to produce high frequency detonations in a long duration," Energy, Elsevier, vol. 189(C).
    7. Huang, Si-Yuan & Zhou, Jin & Liu, Shi-Jie & Peng, Hao-Yang & Yuan, Xue-Qiang, 2022. "Continuous rotating detonation engine fueled by ammonia," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:228-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.