IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223011593.html
   My bibliography  Save this article

Effects of detonation initial conditions on performance of pulse detonation chamber-axial turbine combined system

Author

Listed:
  • Liu, Junyu
  • Wang, Zhiwu
  • Qin, Weifeng
  • Li, Junlin
  • Zhang, Zixu
  • Huang, Jingjing

Abstract

The pulse detonation turbine engine (PDTE) has a potential performance advantage over conventional gas turbine engines due to the self-pressurization feature of detonation. However, pulse detonation exhibits strong unsteadiness, and large flow losses can be generated when the detonation wave interacts with the turbine blades, which severely limits engine performance. Therefore, how to maximize this potential performance advantage is crucial to the application of the PDTE. If the detonation initial conditions could be adjusted to modify the characteristics of detonation so that the pulse detonation chamber (PDC) and turbine are well matched, the performance of the PDTE could be greatly improved. Taking this into account, this paper numerically investigated the performance of the PDC-turbine combined system with different hydrogen-air mixture equivalence ratios and initial temperatures. The turbine efficiency and PDC combustion efficiency were analyzed first, which provided guidance for the thermal efficiency analysis. The results indicated that the combined system was more suitable for operation under lean fuel conditions due to the high thermal efficiency and obvious performance advantage over isobaric combustion. In addition, increasing the initial temperature could improve thermal efficiency under lean fuel conditions, but some of the performance advantage would be sacrificed.

Suggested Citation

  • Liu, Junyu & Wang, Zhiwu & Qin, Weifeng & Li, Junlin & Zhang, Zixu & Huang, Jingjing, 2023. "Effects of detonation initial conditions on performance of pulse detonation chamber-axial turbine combined system," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223011593
    DOI: 10.1016/j.energy.2023.127765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ke & Fan, Wei & Lu, Wei & Zhang, Qibin & Chen, Fan & Yan, Chuanjun & Xia, Qiang, 2015. "Propulsive performance of a pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 79(C), pages 228-234.
    2. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    3. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.
    2. Peng, Hao-Yang & Liu, Wei-Dong & Liu, Shi-Jie & Zhang, Hai-Long & Jiang, Lu-Xin, 2020. "Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber," Energy, Elsevier, vol. 211(C).
    3. Wang, Ke & Wang, Zhicheng & Zhao, Minghao & Sun, Tianyu & Tan, Fengguang & Zhu, Yiyuan & Lu, Wei & Yu, Xiaodong & Sha, Yu & Fan, Wei, 2019. "Study on the valveless and purgeless scheme to produce high frequency detonations in a long duration," Energy, Elsevier, vol. 189(C).
    4. Wang, Ke & Fan, Wei & Lu, Wei & Zhang, Qibin & Chen, Fan & Yan, Chuanjun & Xia, Qiang, 2015. "Propulsive performance of a pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 79(C), pages 228-234.
    5. Tan, Fengguang & Fan, Wei & Wang, Ke & Jin, Shufeng & Chen, Shuping, 2023. "Initiation of an upstream propagating detonation wave near the open end of the detonation tube operating in the valveless and purgeless scheme," Energy, Elsevier, vol. 264(C).
    6. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    7. Huang, Si-Yuan & Zhou, Jin & Liu, Shi-Jie & Peng, Hao-Yang & Yuan, Xue-Qiang, 2022. "Continuous rotating detonation engine fueled by ammonia," Energy, Elsevier, vol. 252(C).
    8. Xie, Qiaofeng & Wen, Haocheng & Li, Weihong & Ji, Zifei & Wang, Bing & Wolanski, Piotr, 2018. "Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition," Energy, Elsevier, vol. 151(C), pages 408-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223011593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.