IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp295-300.html
   My bibliography  Save this article

Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis

Author

Listed:
  • Du, Shenglei
  • Wang, Xianhua
  • Shao, Jingai
  • Yang, Haiping
  • Xu, Guangfu
  • Chen, Hanping

Abstract

The releasing behavior of chlorine (Cl) and fluorine (F) during agricultural waste pyrolysis was investigated using a fixed-bed pyrolysis system with pyrohydrolytic-ion chromatography and thermodynamic equilibrium calculation. Agricultural waste contains a large amount of Cl-bearing species, among which approximately 30% is easily released with biomass drying. During biomass pyrolysis, Cl-bearing species evolve out rapidly to the gas phase, and higher temperature is favorable for the releasing. The releasing process can be divided into two ranges: the fast evaporating range (200–600 °C) and slow evaporating range (600–1000 °C). F shows similar transforming behavior. However, higher temperature is preferred for the release. Thermodynamic simulation shows that Cl mainly exists as KCl(g) at higher temperatures (>600 °C) with some HCl(g) and K2Cl2(g) as intermediate species at lower temperatures (<600 °C), whereas F mainly releases as SiF4 at higher temperatures (>500 °C) with SF5Cl being the dominant F-bearing species at lower temperatures (<500 °C).

Suggested Citation

  • Du, Shenglei & Wang, Xianhua & Shao, Jingai & Yang, Haiping & Xu, Guangfu & Chen, Hanping, 2014. "Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis," Energy, Elsevier, vol. 74(C), pages 295-300.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:295-300
    DOI: 10.1016/j.energy.2014.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400019X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. Wu, C.Z. & Yin, X.L. & Yuan, Z.H. & Zhou, Z.Q. & Zhuang, X.S., 2010. "The development of bioenergy technology in China," Energy, Elsevier, vol. 35(11), pages 4445-4450.
    3. Wang, Wenfeng & Qin, Yong & Wang, Junyi & Li, Jian & Weiss, Dominik J., 2010. "A preliminary method for determining acceptable trace element levels in coal," Energy, Elsevier, vol. 35(1), pages 70-76.
    4. Lee, Jong-Min & Kim, Down-Won & Kim, Jae-Sung & Na, Jeong-Geol & Lee, See-Hoon, 2010. "Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler," Energy, Elsevier, vol. 35(7), pages 2814-2818.
    5. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2012. "Combustion requirements for conversion of ash-rich novel energy crops in a 250 kWth multifuel grate fired system," Energy, Elsevier, vol. 46(1), pages 636-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    2. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    3. Kajina, Wanida & Rousset, Patrick & Chen, Wei-Hsin & Sornpitak, Thitima & Commandré, Jean Michel, 2018. "Coupled effect of torrefaction and blending on chemical and energy properties for combustion of major open burned agriculture residues in Thailand," Renewable Energy, Elsevier, vol. 118(C), pages 113-121.
    4. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    5. Zhao, Jing & Li, Bo & Wei, Xiaolin & Zhang, Yufeng & Li, Teng, 2020. "Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incineration," Energy, Elsevier, vol. 202(C).
    6. Jerzak, Wojciech & Wądrzyk, Mariusz & Kalemba-Rec, Izabela & Bieniek, Artur & Magdziarz, Aneta, 2023. "Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride," Renewable Energy, Elsevier, vol. 215(C).
    7. Jiang, Hewei & Lu, Ping & Xue, Zeyu & Wu, Hao & Zhao, Mingxing & Gong, Ruhao, 2024. "Blended torrefaction of combustible construction solid wastes and paper sludge on its combustion characteristics and migration of heavy metals and Cl," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umar, Mohd Shaharin & Jennings, Philip & Urmee, Tania, 2014. "Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey," Energy, Elsevier, vol. 67(C), pages 496-505.
    2. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    3. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
    6. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    7. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    8. Tomislav Malvić & Uroš Barudžija & Borivoje Pašić & Josip Ivšinović, 2021. "Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia," Energies, MDPI, vol. 14(12), pages 1-16, June.
    9. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    10. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    11. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    12. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    13. Fleck, Ann-Katrin & Anatolitis, Vasilios, 2023. "Achieving the objectives of renewable energy policy – Insights from renewable energy auction design in Europe," Energy Policy, Elsevier, vol. 173(C).
    14. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    15. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    17. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    18. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    19. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    20. Sarraf, M. & Rismanchi, B. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Renewable energy policies for sustainable development in Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 223-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:295-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.