Numerical study of turbulent fluid flow and heat transfer in lateral perforated extended surfaces
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.10.079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shaeri, M.R. & Yaghoubi, M. & Jafarpur, K., 2009. "Heat transfer analysis of lateral perforated fin heat sinks," Applied Energy, Elsevier, vol. 86(10), pages 2019-2029, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiaul Haque Saboj & Preetom Nag & Goutam Saha & Suvash C. Saha, 2023. "Entropy Production Analysis in an Octagonal Cavity with an Inner Cold Cylinder: A Thermodynamic Aspect," Energies, MDPI, vol. 16(14), pages 1-25, July.
- Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
- Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Novel predictive tools for design of radiant and convective sections of direct fired heaters," Applied Energy, Elsevier, vol. 87(7), pages 2194-2202, July.
- Liu, Y.W. & Liu, X. & Yuan, X.Zh. & Wang, X.J., 2016. "Optimizing design of a new zero boil off cryogenic storage tank in microgravity," Applied Energy, Elsevier, vol. 162(C), pages 1678-1686.
- Yuan Xue & Zhihua Ge & Xiaoze Du & Lijun Yang, 2018. "On the Heat Transfer Enhancement of Plate Fin Heat Exchanger," Energies, MDPI, vol. 11(6), pages 1-18, May.
More about this item
Keywords
Turbulent convection heat transfer; Perforation shape; Fin effectiveness; Friction drag coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:632-639. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.