IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v5y1980i4p325-329.html
   My bibliography  Save this article

Closed cycle osmotic power plants for electric power production

Author

Listed:
  • Reali, M.

Abstract

In the present paper, a general description of closed-cycle osmotic power plants (CCOPP) is given with some indications of potentially interesting energetic exploitations and some proposals for specific research projects. The basic idea for the CCOPP is to produce electric power by means of the osmotic flows of suitable solvents and subsequently to separate them anew from their solutes by means of thermal energy obtained from any suitably available heat source.

Suggested Citation

  • Reali, M., 1980. "Closed cycle osmotic power plants for electric power production," Energy, Elsevier, vol. 5(4), pages 325-329.
  • Handle: RePEc:eee:energy:v:5:y:1980:i:4:p:325-329
    DOI: 10.1016/0360-5442(80)90033-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054428090033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(80)90033-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Juwan & Kim, Sung Jin & Kim, Dong-Kwon, 2013. "Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores," Energy, Elsevier, vol. 51(C), pages 413-421.
    2. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    3. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    4. Han, Gang & Ge, Qingchun & Chung, Tai-Shung, 2014. "Conceptual demonstration of novel closed-loop pressure retarded osmosis process for sustainable osmotic energy generation," Applied Energy, Elsevier, vol. 132(C), pages 383-393.
    5. Jeong, Hoe-In & Kim, Hyun Jung & Kim, Dong-Kwon, 2014. "Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization," Energy, Elsevier, vol. 68(C), pages 229-237.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:5:y:1980:i:4:p:325-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.