IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp146-154.html
   My bibliography  Save this article

Greenhouse gasses emissions and energy balances of a non-vertically integrated sugar and ethanol supply chain: A case study in Argentina

Author

Listed:
  • Acreche, Martín M.
  • Valeiro, Alejandro H.

Abstract

In order to address society's concerns regarding the sustainability of sugar and ethanol production and use, this paper calculates the energy and greenhouse gasses (GHG) emissions' balances of a non-vertically integrated sugarcane industry in Tucumán-Argentina. The essential operations involved in the sugar/ethanol production cycle were taken into account. Results show that this industry generated an energy balance of 3.4:1. GHG emissions during sugarcane production were 1824 and 2231 kg CO2eq. ha−1 year−1 for low and middle to high farms' technological levels, respectively. The mill process emitted 1187 kg CO2eq. ha−1 year−1. The main factors influencing these balances were gas-oil and nitrogen fertilizers used in the agricultural stage, natural gas consumed by the sugar mill, and sugarcane burning (only for GHG balance). The impact of ethanol use in reducing GHG emissions under the current production scheme (6.8 Mg ha−1 of sugar + 380.9 kg ha−1 of ethanol), in final blends of 95% gasoline and 5% ethanol in vehicles, is negligible. A sensitivity analysis indicates that switching to 100% bagasse used as fuel in mill's boilers, ethanol being produced directly from sugarcane juice, and a final blend of 90% gasoline and 10% ethanol, an amount of 1746 kg CO2eq. ha−1 year−1 of GHG emissions could be avoided.

Suggested Citation

  • Acreche, Martín M. & Valeiro, Alejandro H., 2013. "Greenhouse gasses emissions and energy balances of a non-vertically integrated sugar and ethanol supply chain: A case study in Argentina," Energy, Elsevier, vol. 54(C), pages 146-154.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:146-154
    DOI: 10.1016/j.energy.2012.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    2. García, Carlos A. & Fuentes, Alfredo & Hennecke, Anna & Riegelhaupt, Enrique & Manzini, Fabio & Masera, Omar, 2011. "Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico," Applied Energy, Elsevier, vol. 88(6), pages 2088-2097, June.
    3. Silva Lora, Electo E. & Escobar Palacio, José C. & Rocha, Mateus H. & Grillo Renó, Maria L. & Venturini, Osvaldo J. & Almazán del Olmo, Oscar, 2011. "Issues to consider, existing tools and constraints in biofuels sustainability assessments," Energy, Elsevier, vol. 36(4), pages 2097-2110.
    4. Souza, Simone Pereira & Seabra, Joaquim E.A., 2013. "Environmental benefits of the integrated production of ethanol and biodiesel," Applied Energy, Elsevier, vol. 102(C), pages 5-12.
    5. Walter, Arnaldo & Dolzan, Paulo & Quilodrán, Oscar & de Oliveira, Janaína G. & da Silva, Cinthia & Piacente, Fabrício & Segerstedt, Anna, 2011. "Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects," Energy Policy, Elsevier, vol. 39(10), pages 5703-5716, October.
    6. Agostinho, Feni & Ortega, Enrique, 2012. "Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil," Energy, Elsevier, vol. 37(1), pages 103-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Carlos A. & Riegelhaupt, Enrique & Ghilardi, Adrián & Skutsch, Margaret & Islas, Jorge & Manzini, Fabio & Masera, Omar, 2015. "Sustainable bioenergy options for Mexico: GHG mitigation and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 545-552.
    2. Khoodaruth, A. & Elahee, M.K., 2013. "Use of higher fibre cane for increasing cogenerated electricity: Policy implications for Mauritius," Utilities Policy, Elsevier, vol. 26(C), pages 67-75.
    3. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Carlos A. & Manzini, Fabio & Islas, Jorge M., 2017. "Sustainability assessment of ethanol production from two crops in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1199-1207.
    2. Alejos Altamirano, Carlos Alberto & Yokoyama, Lídia & de Medeiros, José Luiz & de Queiroz Fernandes Araújo, Ofélia, 2016. "Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment," Applied Energy, Elsevier, vol. 184(C), pages 1246-1263.
    3. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    4. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    5. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    6. Lopes Silva, Diogo Aparecido & de Oliveira, José Augusto & Saavedra, Yovana M.B. & Ometto, Aldo Roberto & Rieradevall i Pons, Joan & Gabarrell Durany, Xavier, 2015. "Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 157-168.
    7. García-Bustamante Carlos Alberto & Aguilar-Rivera Noé & Zepeda-Pirrón Manuel & Armendáriz-Arnez Cynthia, 2018. "Development of indicators for the sustainability of the sugar industry," Environmental & Socio-economic Studies, Sciendo, vol. 6(4), pages 22-38, December.
    8. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    9. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    10. de Oliveira Bordonal, Ricardo & Lal, Rattan & Alves Aguiar, Daniel & de Figueiredo, Eduardo Barretto & Ito Perillo, Luciano & Adami, Marcos & Theodor Rudorff, Bernardo Friedrich & La Scala, Newton, 2015. "Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 547-556.
    11. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    12. Yee, Kian Fei & Mohamed, Abdul Rahman & Tan, Soon Huat, 2013. "A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 604-620.
    13. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    14. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    15. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    16. Çağatay, Selim & Taşdoğan, Celal & Özeş, Reyhan, 2017. "Analysing the impact of targeted bio-ethanol blending ratio in Turkey," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    17. Valdes, Constanza & Hjort, Kim & Seeley, Ralph, 2016. "Brazil’s Agricultural Land Use and Trade: Effects of Changes in Oil Prices and Ethanol Demand," Economic Research Report 242449, United States Department of Agriculture, Economic Research Service.
    18. Dussadee Rattanaphra & Sittinun Tawkaew & Sinsupha Chuichulcherm & Wilasinee Kingkam & Sasikarn Nuchdang & Kittiwan Kitpakornsanti & Unchalee Suwanmanee, 2023. "Evaluation of Life Cycle Assessment of Jatropha Biodiesel Processed by Esterification of Thai Domestic Rare Earth Oxide Catalysts," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    19. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    20. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:146-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.