IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v39y2012i1p426-439.html
   My bibliography  Save this article

Evaluation of the synergetic gas-enrichment and higher-permeability regions for coalbed methane recovery with a fuzzy model

Author

Listed:
  • Liu, Huihu
  • Sang, Shuxun
  • Wang, Geoff G.X.
  • Li, Yangmin
  • Li, Mengxi
  • Liu, Shiqi

Abstract

Determination of the synergetic region with both coalbed methane (CBM) enrichment and higher permeability and its distribution is fundamentally crucial to optimize well design and pattern arrangement for CBM recovery from coal. To address this issue, a predictive model was developed based on fuzzy theory by taking into account the main geological factors that affect the gas enrichment and permeability in coal reservoirs. Following the statistical analysis on a number of geological parameters, Euclid approach degree (a comprehensive evaluation coefficient) and fuzzy matter-elements were determined and integrated into the model. The information entropy method was used to evaluate the effect weight of each geologic factor on overall object of the synergetic gas-enrichment and higher-permeability region. The model was applied to the coal seam No. 3 of a developing coal block in the south of Qinshui basin as an example. The results show that the geological factors such as coal rank, gas saturation, coping thickness, transitional coal structure, and volatile content determine the distributions of the synergetic gas-enrichment and higher-permeability region with higher weight coefficients over 9%. Compared with these key factors, the factors such as coal thickness, gas content, methane concentration, ash content, principal stress difference, fracture density, porosity, and burial depth have only the weight coefficients of <5% and their effects on the synergetic region are very limited. The other factors including reservoir temperature, groundwater level, minimum principal stress, and water content exhibit the moderate impact featured by the weight coefficients varying from 5% to 9%. The model prediction provided a flood/contour map to visualize the synergetic gas-enrichment and higher-permeability regions. With this map, the selected coal block can be classified as extremely favorable, favorable, relatively favorable and unfavorable areas for CBM recovery based on the Euclid approach degree. The extremely favorable and favorable areas mainly distribute in the center and the southwest of the coal block; the relatively favorable area locates in most part of the coal block; unfavorable area dispersedly distributes in the south along the east-west direction. The distribution of the synergetic regions is obviously controlled by the coal structure. The prediction results were verified with the distributions of most CBM wells performed in the same coal block, showing that the model prediction is reasonably agreeable with reality. The model developed in this study can be used as a feasible tool to predict the favorable well locations and optimize the well patterns for CBM recovery.

Suggested Citation

  • Liu, Huihu & Sang, Shuxun & Wang, Geoff G.X. & Li, Yangmin & Li, Mengxi & Liu, Shiqi, 2012. "Evaluation of the synergetic gas-enrichment and higher-permeability regions for coalbed methane recovery with a fuzzy model," Energy, Elsevier, vol. 39(1), pages 426-439.
  • Handle: RePEc:eee:energy:v:39:y:2012:i:1:p:426-439
    DOI: 10.1016/j.energy.2011.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211008528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, D.K. & Dai, Y.J. & Xia, L.Y., 2011. "Economic evaluation based policy analysis for coalbed methane industry in China," Energy, Elsevier, vol. 36(1), pages 360-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    2. Zheng, Shizhuo & Zhang, Xin & Wang, Tao & Liu, Jie, 2015. "An experimental study on premixed laminar and turbulent combustion of synthesized coalbed methane," Energy, Elsevier, vol. 92(P3), pages 355-364.
    3. Tian, Siyu & Qin, Botao & Ma, Dong & Zhou, Qigeng & Luo, Zhongzheng, 2023. "Suppressive effects of alkali metal salt modified dry water material on methane-air explosion," Energy, Elsevier, vol. 285(C).
    4. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Liu, Jianye & Li, Zuxin & Duan, Xuqiang & Luo, Dongkun & Zhao, Xu & Liu, Ruolei, 2021. "Subsidy analysis and development trend forecast of China's unconventional natural gas under the new unconventional gas subsidy policy," Energy Policy, Elsevier, vol. 153(C).
    6. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    7. Zhao, Changxin & Cheng, Yuanping & Li, Wei & Wang, Liang & Zhang, Kaizhong & Wang, Chenghao, 2023. "Critical stress related to coalbed methane migration pattern: Model development and experimental validation," Energy, Elsevier, vol. 284(C).
    8. Rui Guo & Dongkun Luo & Xu Zhao & Jianliang Wang, 2016. "Integrated Evaluation Method-Based Technical and Economic Factors for International Oil Exploration Projects," Sustainability, MDPI, vol. 8(2), pages 1-19, February.
    9. Fan, Lurong & Wang, Binyu & Song, Xiaoling, 2023. "An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams," Energy, Elsevier, vol. 263(PA).
    10. Hamawand, Ihsan & Yusaf, Talal & Hamawand, Sara G., 2013. "Coal seam gas and associated water: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 550-560.
    11. Dai, Shijie & Xu, Jiang & Jia, Li & Chen, Jieren & Yan, Fazhi & Chen, Yuexia & Peng, Shoujian, 2023. "On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models," Energy, Elsevier, vol. 283(C).
    12. Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
    13. Zhang, Baoxin & Deng, Ze & Fu, Xuehai & Yu, Kun & Zeng, Fanhua (Bill), 2023. "An experimental study on the effects of acidization on coal permeability: Implications for the enhancement of coalbed methane production," Energy, Elsevier, vol. 280(C).
    14. Shouqing Lu & Yuanping Cheng & Jinmin Ma & Yuebing Zhang, 2014. "Application of in-seam directional drilling technology for gas drainage with benefits to gas outburst control and greenhouse gas reductions in Daning coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1419-1437, September.
    15. Zhao, Xu & Luo, Dongkun & Xia, Liangyu, 2012. "Modelling optimal production rate with contract effects for international oil development projects," Energy, Elsevier, vol. 45(1), pages 662-668.
    16. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
    17. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).
    18. Yusuf Opeyemi Akinwale & John-Felix Kayode Akinbami, 2016. "Economic Evaluation of Nigerian Marginal Oil and Gas Field using Financial Simulation Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 563-574.
    19. Shiqun Li & Baosheng Zhang, 2016. "Research of Coalbed Methane Development Well-Type Optimization Method Based on Unit Technical Cost," Sustainability, MDPI, vol. 8(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:39:y:2012:i:1:p:426-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.