IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3342-3347.html
   My bibliography  Save this article

Photocatalytic activity of predominantly rutile mixed phase Ag/TiV oxide nanoparticles under visible light irradiation

Author

Listed:
  • Nair, Ranjith G.
  • Tripathi, A.M.
  • Samdarshi, S.K.

Abstract

Nanoscale synthesis of silver sensitized titanium vanadium mixed-metal (Ag/TiV) oxides was done employing sol–gel technique. The physico–chemical properties of the material were examined using XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), EDAX (Energy Dispersive X-ray Spectroscopy), HR-TEM (High Resolution Transmission Electron Microscopy), XPS (X-ray Photoelectron Spectroscopy), UV-DRS and Photoluminescence analysis (PL). The results indicated the presence of predominantly rutile mixed phase particles of 20–30 nm grain size. Identically prepared TiV as well as Ag/TiV oxide catalyst showed enhanced and extended visible light absorption with an absorption upper limit, λ ≥ 550 nm. The visible light photocatalytic activity of Ag/TiV oxide showed an increase of about three and seven times compared to TiV oxide and Degussa P25 respectively, in the rate of degradation of phenol. The reason for the enhanced visible light activity of Ag/TiV oxide may be ascribed to elevated and extended absorption due to combined effect of dopant induced band gap reduction and visible light induced surface plasmon resonance of the Ag nanoparticles. The photocatalytic activity is complemented by localized charge traps and Ag assisted charge separation in the system as well.

Suggested Citation

  • Nair, Ranjith G. & Tripathi, A.M. & Samdarshi, S.K., 2011. "Photocatalytic activity of predominantly rutile mixed phase Ag/TiV oxide nanoparticles under visible light irradiation," Energy, Elsevier, vol. 36(5), pages 3342-3347.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3342-3347
    DOI: 10.1016/j.energy.2011.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoong, L.S. & Chong, F.K. & Dutta, Binay K., 2009. "Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light," Energy, Elsevier, vol. 34(10), pages 1652-1661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, H. & Yang, H. & Chen, H.J. & Du, X. & Wen, D. & Wu, H., 2017. "Photothermal conversion characteristics of gold nanoparticles under different filter conditions," Energy, Elsevier, vol. 141(C), pages 32-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashiri, Robabeh & Mohamed, Norani Muti & Kait, Chong Fai & Sufian, Suriati & Kakooei, Saied & Khatani, Mehboob & Gholami, Zahra, 2016. "Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell," Renewable Energy, Elsevier, vol. 99(C), pages 960-970.
    2. Alami, Abdul Hai & Rajab, Bilal & Abed, Jehad & Faraj, Mohammed & Hawili, Abdullah Abu & Alawadhi, Hussain, 2019. "Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications," Energy, Elsevier, vol. 174(C), pages 526-533.
    3. Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.
    4. El Naggar, Ahmed M.A. & Gobara, Heba M. & Nassar, Ibrahim M., 2015. "Novel nano-structured for the improvement of photo-catalyzed hydrogen production via water splitting with in-situ nano-carbon formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1205-1216.
    5. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    6. Diker, Halide & Varlikli, Canan & Mizrak, Koray & Dana, Aykutlu, 2011. "Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources," Energy, Elsevier, vol. 36(2), pages 1243-1254.
    7. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Nong, Guangzai & Li, Ming & Chen, Yiyi & Zhou, Zongwen & Wang, Shuangfei, 2015. "Simulation of energy conversion in a plant of photocatalysts water splitting for hydrogen fuel," Energy, Elsevier, vol. 81(C), pages 471-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3342-3347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.