IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2984-2996.html
   My bibliography  Save this article

Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire

Author

Listed:
  • Guedri, Kamel
  • Borjini, Mohamed Naceur
  • Jeguirim, Mejdi
  • Brilhac, Jean-François
  • Saïd, Rachid

Abstract

This work describes the application and the performance of a new radiation model in CFD calculations for the simulation of thermal radiation transfer effects on a fire scenario. A 3D Cartesian coordinates radiative heat transfer procedure based on coupling of the FTn finite volume method (FTnFVM) with the bounded high-order resolution CLAM scheme is developed. The narrow-band based weighted-sum-of-gray-gases (NB-WSGG) model is applied to take account of nongray effects by CO2, H2O and soot. To treat irregular boundaries, the present model used the blocked-off-region procedure. This radiation code is implemented in the Fire Dynamics Simulator (FDS), a Computational-Fluid-Dynamics-based fire model, where a the combustion is represented by means of the mixture fraction with a single step chemical reaction model and the Large Eddy Simulation (LES) is used to model the dissipative processes. Computational results with and without radiation effects are compared against available experimental data and quasi-steady state law correlations of in-rack storage fire, which consists a complex configuration of double tri-wall corrugated paper cartons placed onto a wood pallet. Sensibility analyses of spatial and angular grids demonstrate the improvements due to the FTnFVM and to the CLAM scheme in the configuration studied. Results show that the simulations of the flame height, the gas temperature and the gas velocity are strongly influenced by thermal radiation. Overall, simulations predicted closer profiles to the experimental results only when the nongray-sooting radiation model was incorporated and an over-prediction of the gas temperature and the flame height is found when radiation is neglected. A sensibility analysis has shown that the flame characteristics are strongly affected by the soot yield.

Suggested Citation

  • Guedri, Kamel & Borjini, Mohamed Naceur & Jeguirim, Mejdi & Brilhac, Jean-François & Saïd, Rachid, 2011. "Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire," Energy, Elsevier, vol. 36(5), pages 2984-2996.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2984-2996
    DOI: 10.1016/j.energy.2011.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Méchi, Rachid & Farhat, Habib & Guedri, Kamel & Halouani, Kamel & Said, Rachid, 2010. "Extension of the zonal method to inhomogeneous non-grey semi-transparent medium," Energy, Elsevier, vol. 35(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Longxing & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2021. "Study on flame merging behavior and air entrainment restriction of multiple fires," Energy, Elsevier, vol. 218(C).
    2. Yang, Jianfeng & Zhang, Bo & Chen, Liangchao & Diao, Xu & Hu, Yuanhao & Suo, Guanyu & Li, Ru & Wang, Qianlin & Li, Jinghai & Zhang, Jianwen & Dou, Zhan, 2023. "Improved solid radiation model for thermal response in large crude oil tanks," Energy, Elsevier, vol. 284(C).
    3. De la Cruz-Ávila, M. & Martínez-Espinosa, E. & Polupan, Georgiy & Vicente, W., 2017. "Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array," Energy, Elsevier, vol. 141(C), pages 1629-1649.
    4. Shi, Congling & Deng, Lei & Ren, Fei & Tang, Fei, 2023. "Experimental study on the flame height evolution of two adjacent hydrocarbon pool fires under transverse air flow," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandeira Santos, Alex Álisson & Torres, Ednildo Andrade & de Paula Pereira, Pedro Afonso, 2011. "Experimental investigation of the natural gas confined flames using the OEC," Energy, Elsevier, vol. 36(3), pages 1527-1534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2984-2996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.