IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1351-1361.html
   My bibliography  Save this article

Hybrid modeling of China’s vehicle ownership and projection through 2050

Author

Listed:
  • Hao, Han
  • Wang, Hewu
  • Yi, Ran

Abstract

As representative for emerging vehicle market, China has one of the fastest growing rates of automobile ownership in the world. The huge and increasing vehicle stock has significantly contributed to the fast growing of China’s energy demand and GHG emissions. It is an important issue to project China’s vehicle ownership, which to a large extent determines China’s oil demand and GHG emissions from road transportation sector in the future. In this study, we established a hybrid model with three sub models to simulate the growth patterns of China’s private passenger vehicles, urban public transport vehicles and economic utility vehicles. By using this model, we projected that China’s vehicle population would reach 184.8, 363.8 and 606.7 million by 2020, 2030 and 2050 respectively. The fast increase of urban private passenger vehicles is the main driving force for vehicle population growth. Population of urban private passenger vehicles would account for 70.1%, 81.1% and 86.1% of total vehicle population in 2020, 2030 and 2050 respectively. It was demonstrated by sensitivity analysis that vehicle population was quite sensitive to household income and vehicle price, implying an effective lever for regulating the growth of vehicle population.

Suggested Citation

  • Hao, Han & Wang, Hewu & Yi, Ran, 2011. "Hybrid modeling of China’s vehicle ownership and projection through 2050," Energy, Elsevier, vol. 36(2), pages 1351-1361.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1351-1361
    DOI: 10.1016/j.energy.2010.10.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.10.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    2. Esmaiel Abounoori & Patrick McCloughan, 2003. "A simple way to calculate the Gini Coefficient for grouped as well as ungrouped data," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 505-509.
    3. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    4. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    5. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    2. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    3. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    4. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    5. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    6. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    7. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    8. Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org, revised Sep 2024.
    9. Jose Maria Sarabia & Francisco Azpitarte, 2012. "On the relationship between objective and subjective inequality indices and the natural rate of subjective inequality," Working Papers 248, ECINEQ, Society for the Study of Economic Inequality.
    10. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    11. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    12. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    13. Loek Groot & Daan Linde, 2016. "Income inequality, redistribution and the position of the decisive voter," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 14(3), pages 269-287, September.
    14. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    15. Fackler, Paul L. & King, Robert P., 1987. "The Evaluation of Probability Distributions with Special Emphasis on Price Distributions Derived from Option Premiums," Regional Research Projects > 1987: S-180 Annual Meeting, March 22-25, 1987, San Antonio, Texas 272343, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    16. P. Jenkins, Stephen & Biewen, Martin, 2002. "Accounting for poverty differences between the United States, Great Britain and Germany," ISER Working Paper Series 2002-14, Institute for Social and Economic Research.
    17. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    18. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    19. Frank A. Cowell & Russell Davidson & Emmanuel Flachaire, 2015. "Goodness of Fit: An Axiomatic Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 54-67, January.
    20. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1351-1361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.