IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3814-3820.html
   My bibliography  Save this article

A new method of leak location for the natural gas pipeline based on wavelet analysis

Author

Listed:
  • Yang, Zhao
  • Xiong, Zhuang
  • Shao, Min

Abstract

This paper analyzes the properties of wavelet transform and its potential application in detecting the leakage location of gas pipeline. An entity-part method, which is proposed for the accurate leaking point, has been proved valid in the stimulation experiment. In addition, method of Romberg and Dichotomy Searching are also adopted for the computational analysis of leaking point. In detail, the effect of gas velocity is taken into consideration in the location formula and we propose to consider the average velocities of two parts caused by the leaking point, respectively. Finally, we test these three methods in a real gas pipeline experiment and the result shows the improvement to some extent in contrast to the traditional approach.

Suggested Citation

  • Yang, Zhao & Xiong, Zhuang & Shao, Min, 2010. "A new method of leak location for the natural gas pipeline based on wavelet analysis," Energy, Elsevier, vol. 35(9), pages 3814-3820.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3814-3820
    DOI: 10.1016/j.energy.2010.05.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421000304X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    2. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Xu, Ziqiang & Li, Cheng & Mu, Lianbo & Wang, Suilin & Lu, Junhui & Lan, Yuncheng, 2024. "Leakage detection method of underground heating pipeline based on improved wavelet threshold function," Energy, Elsevier, vol. 295(C).
    4. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    5. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    6. Mohsin, R. & Majid, Z.A. & Yusof, M.Z., 2014. "Safety distance between underground natural gas and water pipeline facilities," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 53-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3814-3820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.