IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p229-238.html
   My bibliography  Save this article

Exergoecology: A thermodynamic approach for accounting the Earth's mineral capital. The case of bauxite–aluminium and limestone–lime chains

Author

Listed:
  • Valero, Antonio
  • Valero, Alicia

Abstract

As man extracts minerals, the natural deposits become depleted in quantity and concentration, and hence the mineral wealth of the Earth decreases. This paper explains the exergoecological method used for calculating the mineral exergy bonus that Nature gives us for free for providing minerals concentrated in mines and not dispersed in the Earth's crust. The method is based on two concepts: Exergy and the Exergy cost. Exergy measures the minimum (reversible) work required to extract and concentrate the materials from a Reference Environment (RE) to the conditions found in Nature. This RE can be approximated to a completely degraded crepuscular planet with the absence of fossil fuels and mineral deposits. And the exergy cost accounts for the actual exergy required for accomplishing the same process with available technologies. These costs are complementary to the conventional extraction, land-recovering, processing and refining costs. The case studies of two industrial chains: bauxite–alumina–aluminium, and limestone–calcite–lime are presented and discussed. As the method provides values in energy units, the annual exergy decrease in the mineral endowment of the planet due to the extraction of minerals can now take into account the fossil fuel's exergy as well as the non-fuel mineral exergy costs.

Suggested Citation

  • Valero, Antonio & Valero, Alicia, 2010. "Exergoecology: A thermodynamic approach for accounting the Earth's mineral capital. The case of bauxite–aluminium and limestone–lime chains," Energy, Elsevier, vol. 35(1), pages 229-238.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:229-238
    DOI: 10.1016/j.energy.2009.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dunham, Sir Kingsley, 1974. "Non-renewable mineral resources," Resources Policy, Elsevier, vol. 1(1), pages 3-13, September.
    2. Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
    3. Steen, Bengt & Borg, Gunnar, 2002. "An estimation of the cost of sustainable production of metal concentrates from the earth's crust," Ecological Economics, Elsevier, vol. 42(3), pages 401-413, September.
    4. Valero, Alicia & Valero, Antonio & Arauzo, Inmaculada, 2008. "Evolution of the decrease in mineral exergy throughout the 20th century. The case of copper in the US," Energy, Elsevier, vol. 33(2), pages 107-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo A. F. Alvarenga & Ittana De Oliveira Lins & José Adolfo de Almeida Neto, 2016. "Evaluation of Abiotic Resource LCIA Methods," Resources, MDPI, vol. 5(1), pages 1-21, February.
    2. Valero, Al. & Valero, A., 2011. "A prediction of the exergy loss of the world's mineral reserves in the 21st century," Energy, Elsevier, vol. 36(4), pages 1848-1854.
    3. Kovalev, Andrey V., 2016. "Misuse of thermodynamic entropy in economics," Energy, Elsevier, vol. 100(C), pages 129-136.
    4. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.
    5. Domínguez, Adriana & Valero, Alicia & Valero, Antonio, 2013. "Exergy accounting applied to metallurgical systems: The case of nickel processing," Energy, Elsevier, vol. 62(C), pages 37-45.
    6. Jose-Luis, Palacios & Abadias, Alejandro & Valero, Alicia & Valero, Antonio & Reuter, Markus, 2019. "The energy needed to concentrate minerals from common rocks: The case of copper ore," Energy, Elsevier, vol. 181(C), pages 494-503.
    7. Valero, Alicia & Domínguez, Adriana & Valero, Antonio, 2015. "Exergy cost allocation of by-products in the mining and metallurgical industry," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 128-142.
    8. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    9. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    10. Valero, Alicia & Valero, Antonio, 2010. "Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1074-1083.
    11. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
    12. Valero, Alicia & Valero, Antonio & Stanek, Wojciech, 2018. "Assessing the exergy degradation of the natural capital: From Szargut's updated reference environment to the new thermoecological-cost methodology," Energy, Elsevier, vol. 163(C), pages 1140-1149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valero, Alicia & Valero, Antonio & Martínez, Amaya, 2010. "Inventory of the exergy resources on earth including its mineral capital," Energy, Elsevier, vol. 35(2), pages 989-995.
    2. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    3. Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
    4. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    5. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    6. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    7. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    8. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    9. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    10. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    11. Swart, Pilar & Dewulf, Jo, 2013. "Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 180-187.
    12. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    13. Simpson, Adam P. & Edwards, Chris F., 2013. "The utility of environmental exergy analysis for decision making in energy," Energy, Elsevier, vol. 55(C), pages 742-751.
    14. Milia, Daniela & Sciubba, Enrico, 2006. "Exergy-based lumped simulation of complex systems: An interactive analysis tool," Energy, Elsevier, vol. 31(1), pages 100-111.
    15. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    16. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    17. Ertesvåg, Ivar S., 2005. "Energy, exergy, and extended-exergy analysis of the Norwegian society 2000," Energy, Elsevier, vol. 30(5), pages 649-675.
    18. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    19. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
    20. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:229-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.