IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i2p292-299.html
   My bibliography  Save this article

Exergetic analysis of solid oxide fuel cell and biomass gasification integration with heat pipes

Author

Listed:
  • Fryda, L.
  • Panopoulos, K.D.
  • Karl, J.
  • Kakaras, E.

Abstract

This paper presents an exergetic analysis of a combined heat and power (CHP) system, integrating a near-atmospheric solid oxide fuel cell (SOFC) with an allothermal biomass fluidised bed steam gasification process. The gasification heat requirement is supplied to the fluidised bed from the SOFC stack through high-temperature sodium heat pipes. The CHP system was modelled in AspenPlus™ software including sub-models for the gasification, SOFC, gas cleaning and heat pipes. For an average current density of 3000Am−2 the proposed system would consume 90kgh−1 biomass producing 170kWe net power with a system exergetic efficiency of 36%, out of which 34% are electrical.

Suggested Citation

  • Fryda, L. & Panopoulos, K.D. & Karl, J. & Kakaras, E., 2008. "Exergetic analysis of solid oxide fuel cell and biomass gasification integration with heat pipes," Energy, Elsevier, vol. 33(2), pages 292-299.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:2:p:292-299
    DOI: 10.1016/j.energy.2007.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bedringås, Kai W. & Ertesvåg, Ivar S. & Byggstøyl, Ståle & Magnussen, Bjørn F., 1997. "Exergy analysis of solid-oxide fuel-cell (SOFC) systems," Energy, Elsevier, vol. 22(4), pages 403-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    2. Nam, Hoseok & Ibano, Kenzo & Konishi, Satoshi, 2020. "Cost analysis and energy return on investment of fuel cell and gas turbine integrated fusion-biomass hybrid system; application of a small scale conceptual fusion reactor GNOME," Energy, Elsevier, vol. 203(C).
    3. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    4. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    5. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    6. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    8. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    9. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    10. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    11. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    12. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    13. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    14. Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
    15. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    16. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    17. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    2. Yang, Fei & Gu, Jianmin & Ye, Luhan & Zhang, Zuoxiang & Rao, Gaofeng & Liang, Yachun & Wen, Kechun & Zhao, Jiyun & Goodenough, John B. & He, Weidong, 2016. "Justifying the significance of Knudsen diffusion in solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 242-246.
    3. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    4. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    5. Silveira, José Luz & Martins Leal, Elisângela & Ragonha, Luiz F, 2001. "Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water," Energy, Elsevier, vol. 26(10), pages 891-904.
    6. Wang, Jingyi & Hua, Jing & Pan, Zehua & Xu, Xinhai & Zhang, Deming & Jiao, Zhenjun & Zhong, Zheng, 2024. "Novel SOFC system concept with anode off-gas dual recirculation: A pathway to zero carbon emission and high energy efficiency," Applied Energy, Elsevier, vol. 361(C).
    7. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:2:p:292-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.