IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i12p1816-1823.html
   My bibliography  Save this article

Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs

Author

Listed:
  • Kaşka, Ö.
  • Yumrutaş, R.

Abstract

This study deals with comparison of experimental and theoretical results of transient temperature variations in multilayered building walls and flat roofs, and heat flow through the building structures. Experimental and theoretical models are presented to find the transient temperature variations in these structures and heat flow through these elements, which depends on inside surface and room air temperatures. Instantaneous inside and outside air temperatures, and surface temperatures of each wall and roof layers are measured by using the experimental model consisted of two rooms, cooling units, measuring devices and computers. A computer program based on the theoretical model is developed to perform numerical calculations. Hourly temperature variations of the nodal points are computed numerically over a period of 24h by using the hourly measured ambient air temperatures and solar radiation flux on a horizontal surface for the city of Gaziantep (37.1°N), Turkey, and also by using thermophysical properties of the structures. Results obtained from the experimental and theoretical models are compared with each other, and validation of the theoretical model is verified in this paper. Computations for various multilayer building walls of briquette, brick, blokbims, and autoclaved aerated concrete (AAC), which are commonly used in Turkey are repeated for finding heat gain through these structures, and results are compared to determine suitable wall material. It is observed that AAC and blokbims are more suitable wall materials than briquette and brick due to heat flow through these elements.

Suggested Citation

  • Kaşka, Ö. & Yumrutaş, R., 2008. "Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs," Energy, Elsevier, vol. 33(12), pages 1816-1823.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:12:p:1816-1823
    DOI: 10.1016/j.energy.2008.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208001850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yumrutaş, R. & Ünsal, M., 2000. "Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks," Energy, Elsevier, vol. 25(12), pages 1231-1243.
    2. Yumrutaş, R & Ünsal, M, 2000. "A computational model of a heat pump system with a hemispherical surface tank as the ground heat source," Energy, Elsevier, vol. 25(4), pages 371-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
    2. Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
    3. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    4. Adil Zainal, Omer & Yumrutaş, Recep, 2015. "Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs," Energy, Elsevier, vol. 82(C), pages 758-768.
    5. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
    2. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    3. Ucar, A. & Inalli, M., 2005. "Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey," Renewable Energy, Elsevier, vol. 30(7), pages 1005-1019.
    4. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    5. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    6. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    7. Karacavus, Berrin & Can, Ahmet, 2008. "Experimental investigation of a solar energy heating system under the climatic conditions of Edirne," Renewable Energy, Elsevier, vol. 33(9), pages 2084-2096.
    8. Zhao, Jinling & Lyu, Lianyi & Li, Xuexin, 2020. "Numerical analysis of the operation regulation in a solar heating system with seasonal water pool thermal storage," Renewable Energy, Elsevier, vol. 150(C), pages 1118-1126.
    9. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    10. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    11. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    12. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    14. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    15. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    16. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    17. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    19. Elhashmi, Rodwan & Hallinan, Kevin P. & Chiasson, Andrew D., 2020. "Low-energy opportunity for multi-family residences: A review and simulation-based study of a solar borehole thermal energy storage system," Energy, Elsevier, vol. 204(C).
    20. Abbas, Zulkarnain & Yong, Li & Abbas, Saqlain & Chen, Dongwen & Li, Y. & Wang, R.Z., 2021. "Performance analysis of seasonal soil heat storage system based on numerical simulation and experimental investigation," Renewable Energy, Elsevier, vol. 178(C), pages 66-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:12:p:1816-1823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.