IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i8p1334-1342.html
   My bibliography  Save this article

A novel combined cycle with synthetic utilization of coal and natural gas

Author

Listed:
  • Han, Wei
  • Jin, Hongguang
  • Xu, Wei

Abstract

In this paper, a novel combined cycle with synthetic utilization of coal and natural gas is proposed, in which the burning of coal provides thermal energy to the methane/steam reforming reaction. The syngas fuel, generated by the reforming reaction, is directly provided to the gas turbine as fuel. The reforming process with coal firing has been investigated based on the concept of energy level, and the equations has been derived to disclosing the mechanism of the cascade utilization of chemical energy of natural gas and coal in the reforming process with coal firing. Through the synthetic utilization of natural gas and coal, the exergy destruction of the combustion of syngas is decreased obviously compared with the direct combustion of natural gas and coal. As a result, the overall thermal efficiency of the new cycle reaches 52.9%, as energy supply by methane is about twice as much as these of coal. With the same consumption of natural gas and coal the new cycle can generate about 6% more power than the reference cycles (the combined cycle and the steam power plant). The promising results obtained here provide a new way to utilize natural gas and coal more efficiently and economically by synthetic utilization.

Suggested Citation

  • Han, Wei & Jin, Hongguang & Xu, Wei, 2007. "A novel combined cycle with synthetic utilization of coal and natural gas," Energy, Elsevier, vol. 32(8), pages 1334-1342.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:8:p:1334-1342
    DOI: 10.1016/j.energy.2006.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206002805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Hongguang & Zhao, Hongbin & Liu, Zelong & Cai, Ruixian, 2004. "A novel EFHAT system and exergy analysis with energy utilization diagram," Energy, Elsevier, vol. 29(12), pages 1983-1991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srinivas, T., 2009. "Study of a deaerator location in triple-pressure reheat combined power cycle," Energy, Elsevier, vol. 34(9), pages 1364-1371.
    2. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    3. Wang, Hongsheng & Wang, Bingzheng & Qi, Xingyu & Wang, Jian & Yang, Rufan & Li, Duanxing & Hu, Xuejiao, 2021. "Innovative non–oxidative methane dehydroaromatization via solar membrane reactor," Energy, Elsevier, vol. 216(C).
    4. Liu, Heng & Yang, Shuang & Wu, Shujie & Shang, Fanpeng & Yu, Xiaofang & Xu, Chen & Guan, Jingqi & Kan, Qiubin, 2011. "Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization," Energy, Elsevier, vol. 36(3), pages 1582-1589.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    2. Costa, V.A.F., 2021. "ENERGY-EXERGY diagrams for states and energy and exergy balance equations representation," Energy, Elsevier, vol. 218(C).
    3. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
    4. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:8:p:1334-1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.