IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033760.html
   My bibliography  Save this article

The novel methods of insulation detection based on Adaptive Levenberg–Marquardt algorithm and Third-Order Variable Forgetting Factor Recursive Least Squares-Decouple algorithm

Author

Listed:
  • Ruan, Dong
  • Cui, Xiangyu
  • He, Zhicheng
  • Gao, Hui

Abstract

Electric vehicles (EVs) are central to the future of automotive development, with high-voltage insulation performance critical for operational safety. Existing insulation detection methods face challenges such as limited scope, low accuracy, poor interference resistance, and slow response. This study introduces two insulation detection models based on the unbalanced bridge method and low-frequency signal injection, analyzing their theoretical effectiveness and confirming superior detection capability in the unbalanced bridge method. Furthermore, to address feedback voltage waveform issues in this method, an adaptive Levenberg–Marquardt (ALM) algorithm is proposed to prevent the divergence typically seen in traditional approaches. Additionally, a decoupling algorithm utilizing a Third-order Variable Forgetting Factor Recursive Least Squares (TVFF-Decouple) simplifies algorithm complexity significantly while enabling anomaly detection. Finally, AEKF and SRCKF algorithms were used for observation, identifying an optimal combination that reduces noise interference effectively. Simulations and bench tests demonstrate that the proposed methods swiftly and accurately detect positive and negative insulation resistances and equivalent Y capacitance under various conditions.

Suggested Citation

  • Ruan, Dong & Cui, Xiangyu & He, Zhicheng & Gao, Hui, 2024. "The novel methods of insulation detection based on Adaptive Levenberg–Marquardt algorithm and Third-Order Variable Forgetting Factor Recursive Least Squares-Decouple algorithm," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033760
    DOI: 10.1016/j.energy.2024.133598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.
    2. Khan, F.M. NizamUddin & Rasul, Mohammad G. & Sayem, A.S.M. & Mandal, Nirmal K., 2024. "A computational analysis of effects of electrode thickness on the energy density of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    2. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    3. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    4. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.