IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032869.html
   My bibliography  Save this article

A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction

Author

Listed:
  • Zhu, Anfeng
  • Zhao, Qiancheng
  • Shi, Zhaoyao
  • Yang, Tianlong
  • Zhou, Ling
  • Zeng, Bing

Abstract

When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole power system. To recognize and reconstruct the abnormal data accurately and efficiently, this study proposes an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), extreme learning machine (ELM), crazy improve butterfly optimization algorithm (CIBOA), and bi-directional long short-term memory (BILSTM). In this system, the ICEEMDAN is utilized to decompose the original wind speed sequence, and then the ELM is employed as the initial prediction engine to extract the features of each sub-sequence to achieve the preliminary prediction outcomes. The CIBOA is employed to optimize the BILSTM model parameters. To further explore the unsteady features in the wind speed series, the residual results of the preliminary prediction are modeled using BILSTM, and the predicted residuals and preliminary results are integrated to obtain the final reconstructed values. In addition, the combined model is discussed in detail employing six assessment indicators, improvements of the reconstruction model, Diebold-Mariano test, operation time, and sensitivity analysis. The results indicate that the Pearson correlation coefficient (PCC) values of the proposed model are 0.9986, 0.9978, and 0.9979, respectively. It is concluded that the proposed hybrid reconstruction model accurately identifies and reconstructs abnormal wind speed, which provides a new technique for the reasonable utilization of wind energy.

Suggested Citation

  • Zhu, Anfeng & Zhao, Qiancheng & Shi, Zhaoyao & Yang, Tianlong & Zhou, Ling & Zeng, Bing, 2024. "A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032869
    DOI: 10.1016/j.energy.2024.133510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.