IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i5p621-636.html
   My bibliography  Save this article

Experimental evaluation of the internal heat exchanger influence on a vapour compression plant energy efficiency working with R22, R134a and R407C

Author

Listed:
  • Navarro-Esbrí, J.
  • Cabello, R.
  • Torrella, E.

Abstract

Internal or liquid-suction heat exchangers are used in many refrigeration and air conditioning systems based on the vapour compression cycle, with the basic objective of assuring the entrance of refrigerant in liquid phase to the expansion device. This purpose is achieved by exchanging energy between the cool gaseous refrigerant leaving the evaporator and warm liquid refrigerant exiting the condenser. These devices can have positive or negative influences on the plant overall energy efficiency, depending on the working fluid and the operating conditions. In this paper the experimental results obtained from a refrigeration test facility with and without the presence of an internal heat exchanger, using R22, R134a and R407C as working fluids, are presented and analyzed, including the impact of pressure drops and variations of refrigerant mass flow rate. A comparison between experimental and theoretical results is also enclosed.

Suggested Citation

  • Navarro-Esbrí, J. & Cabello, R. & Torrella, E., 2005. "Experimental evaluation of the internal heat exchanger influence on a vapour compression plant energy efficiency working with R22, R134a and R407C," Energy, Elsevier, vol. 30(5), pages 621-636.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:5:p:621-636
    DOI: 10.1016/j.energy.2004.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Man-Hoe, 2002. "Performance evaluation of R-22 alternative mixtures in a breadboard heat pump with pure cross-flow condenser and counter-flow evaporator," Energy, Elsevier, vol. 27(2), pages 167-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    2. Kasni Sumeru & Triaji Pangripto Pramudantoro & Andriyanto Setyawan & Rizki Muliawan & Toto Tohir & Mohamad Firdaus bin Sukri, 2022. "Effect of Compressor-Discharge-Cooler Heat-Exchanger Length Using Condensate Water on the Performance of a Split-Type Air Conditioner Using R32 as Working Fluid," Energies, MDPI, vol. 15(21), pages 1-16, October.
    3. Liu, Xuetao & Hu, Yusheng & Wang, Qifan & Yao, Liang & Li, Minxia, 2021. "Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating," Energy, Elsevier, vol. 229(C).
    4. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    5. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    2. Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:5:p:621-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.