IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i2p111-117.html
   My bibliography  Save this article

Exergy analysis on combustion and energy conversion processes

Author

Listed:
  • Taniguchi, Hiroshi
  • Mouri, Kunihiko
  • Nakahara, Takefumi
  • Arai, Norio

Abstract

When we consider exergy analysis on combustion and thermodynamic processes, we introduce another concept against energy analysis, which is supported by an evaluation of its temperature level. When a higher temperature energy than that an ambient level is taken into consideration, it can be put for some domestic or industrial purpose. A medium temperature energy of 30–60 °C is used for domestic heating, and a high temperature of 200 °C and above is suitable for power generation or process heating. Therefore, we study exergy concept supported by temperature level. When we discuss power generation, a high temperature energy of 1500 °C and above in combined cycle has a higher conversion efficiency than that of 500–600 °C in steam cycle. If we try to apply high temperature air combustion, a preheated air temperature of 1000 °C and above can be produced by exhaust heat recovery from stack gas, which has been developed as a new technology of energy conservation. In this study, the authors present an exergy analysis on combustion and energy conversion processes, which is based on the above-mentioned concept of exergy and energy supported by temperature level. When we discuss high temperature air combustion in furnace, this process shows a higher performance than that of the ambient air combustion. Furthermore, when we discuss the power generation and heat pump processes, the minimum ambient temperature would already be known for each season, and the conversion performance can be estimated by the maximum operating temperature in their cycles. So, the authors attempt to calculate the exergy and energy values for combustion, power generation and heat pump processes.

Suggested Citation

  • Taniguchi, Hiroshi & Mouri, Kunihiko & Nakahara, Takefumi & Arai, Norio, 2005. "Exergy analysis on combustion and energy conversion processes," Energy, Elsevier, vol. 30(2), pages 111-117.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:2:p:111-117
    DOI: 10.1016/j.energy.2004.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Hongbin & Yue, Pengxiu, 2011. "Performance analysis of humid air turbine cycle with solar energy for methanol decomposition," Energy, Elsevier, vol. 36(5), pages 2372-2380.
    2. Coskun, C. & Oktay, Z. & Ilten, N., 2009. "A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition," Energy, Elsevier, vol. 34(11), pages 1898-1902.
    3. Ohara, B.Y. & Lee, H., 2015. "Exergetic analysis of a solar thermoelectric generator," Energy, Elsevier, vol. 91(C), pages 84-90.
    4. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    5. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    6. Feyz, M.E. & Pishbin, S.I. & Ghazikhani, M. & Modarres Razavi, S.M.R., 2015. "Parametric assessment of a low-swirl burner using the exergy analysis," Energy, Elsevier, vol. 79(C), pages 117-126.
    7. Attonaty, Kevin & Stouffs, Pascal & Pouvreau, Jérôme & Oriol, Jean & Deydier, Alexandre, 2019. "Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage," Energy, Elsevier, vol. 172(C), pages 1132-1143.
    8. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:2:p:111-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.