Two-stage optimization model for scheduling multiproduct pipeline network with multi-source and multi-terminal
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132511
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
- Wei, Qi & Zhou, Peng & Shi, Xunpeng, 2023. "The congestion cost of pipeline networks under third-party access in China's natural gas market," Energy, Elsevier, vol. 284(C).
- Chen, Haihong & Zuo, Lili & Wu, Changchun & Li, Qingping, 2019. "An MILP formulation for optimizing detailed schedules of a multiproduct pipeline network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 142-164.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miao, Xingyuan & Zhao, Hong, 2024. "Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Mostafaei, Hossein & Castro, Pedro M. & Oliveira, Fabricio & Harjunkoski, Iiro, 2021. "Efficient formulation for transportation scheduling of single refinery multiproduct pipelines," European Journal of Operational Research, Elsevier, vol. 293(2), pages 731-747.
- Du, Jian & Zheng, Jianqin & Liang, Yongtu & Ma, Yunlu & Wang, Bohong & Liao, Qi & Xu, Ning & Ali, Arshid Mahmood & Rashid, Muhammad Imtiaz & Shahzad, Khurram, 2024. "A deep learning-based approach for predicting oil production: A case study in the United States," Energy, Elsevier, vol. 288(C).
- Zhang, Guoqing & Shi, Jianmai & Chaudhry, Sohail S. & Li, Xindan, 2019. "Multi-period multi-product acquisition planning with uncertain demands and supplier quantity discounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 117-140.
More about this item
Keywords
Multiproduct pipeline network; Multi-source and multi-terminal; Mixed-integer linear programming; Dynamic index batch numbering; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.