IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1633-1641.html
   My bibliography  Save this article

CO2 capture and storage—the essential bridge to the hydrogen economy

Author

Listed:
  • Simbeck, D.R.

Abstract

Energy futurists are excited about the “hydrogen economy” where hydrogen (H2) will be effectively utilized in advanced fuel cells to produce clean and efficient energy. They also assume that H2 will be generated from advanced renewable systems such as wind turbines, solar collectors, and biomass as these are low emissions sustainable energy resources. The hydrogen economy concept is interesting and certainly a possibility in the long-term as the fossil fuel age is expected to peak in 50–100 years, making fossil fuels increasingly expensive. However, for the short-term this idea must overcome tremendous obstacles and challenges due to the high cost of H2 production from renewables, and more importantly, the need to develop the required H2 infrastructure. This paper explains the key issues that may favor the hydrogen economy for the long-term, and more importantly, addresses CO2 capture options that are essential to help develop the required H2 infrastructure in the short-term.

Suggested Citation

  • Simbeck, D.R., 2004. "CO2 capture and storage—the essential bridge to the hydrogen economy," Energy, Elsevier, vol. 29(9), pages 1633-1641.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1633-1641
    DOI: 10.1016/j.energy.2004.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Duu-Hwa & Hsu, Shih-Shun & Tso, Chun-To & Su, Ay & Lee, Duu-Jong, 2009. "An economy-wide analysis of hydrogen economy in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1947-1954.
    2. Maria Portarapillo & Almerinda Di Benedetto, 2021. "Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns," Energies, MDPI, vol. 14(10), pages 1-12, May.
    3. Sarkar, Susanjib & Kumar, Amit, 2010. "Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands," Energy, Elsevier, vol. 35(2), pages 582-591.
    4. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    5. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Martínez, I. & Romano, M.C. & Fernández, J.R. & Chiesa, P. & Murillo, R. & Abanades, J.C., 2014. "Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop," Applied Energy, Elsevier, vol. 114(C), pages 192-208.
    7. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    8. James Meadowcroft, 2009. "What about the politics? Sustainable development, transition management, and long term energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 323-340, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1633-1641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.