IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1529-1536.html
   My bibliography  Save this article

Modeling greenhouse gas energy technology responses to climate change

Author

Listed:
  • Edmonds, James A
  • Clarke, John
  • Dooley, James
  • Kim, Son H
  • Smith, Steven J

Abstract

Models of the global energy system can help shed light on the competition and complementarities among technologies and energy systems both in the presence and absence of actions to affect the concentration of greenhouse gases. This paper explores the role of modeling in the analysis of technology deployment in addressing climate change. It examines the competition among technologies in a variety of markets, and explores conditions under which new markets, such as for hydrogen and carbon disposal, or modern commercial biomass, could emerge. Carbon capture and disposal technologies are shown to have the potential to play a central role in controlling the cost of stabilizing the concentration of greenhouse gases, the goal of the UN Framework Convention on Climate Change.

Suggested Citation

  • Edmonds, James A & Clarke, John & Dooley, James & Kim, Son H & Smith, Steven J, 2004. "Modeling greenhouse gas energy technology responses to climate change," Energy, Elsevier, vol. 29(9), pages 1529-1536.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1529-1536
    DOI: 10.1016/j.energy.2004.03.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yabei & Smith, Steven J. & Kyle, G. Page & Stackhouse Jr., Paul W., 2010. "Modeling the potential for thermal concentrating solar power technologies," Energy Policy, Elsevier, vol. 38(12), pages 7884-7897, December.
    2. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    3. Ina Meyer & Claudia Kettner & Daniela Kletzan-Slamanig & Erwin Schmid & Martin Schönhart & Andreas Gobiet & Olivia Koland & Thomas Loibnegger & Christoph Schmid & Thomas Trink, 2010. "AMARA – Adequacy of Mitigation and Adaptation Options for a Case Study Region in Austria. The Case for Agriculture and Forestry," WIFO Studies, WIFO, number 38862.
    4. Detlef Vuuren & Jason Lowe & Elke Stehfest & Laila Gohar & Andries Hof & Chris Hope & Rachel Warren & Malte Meinshausen & Gian-Kasper Plattner, 2011. "How well do integrated assessment models simulate climate change?," Climatic Change, Springer, vol. 104(2), pages 255-285, January.
    5. Stéphane Hallegatte & Przyluski Valentin & Adrien Vogt-Schilb, 2011. "Building world narratives for climate change impact, adaptation and vulnerability analyses," Post-Print hal-00618688, HAL.
    6. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    7. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    8. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    9. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation," Applied Energy, Elsevier, vol. 178(C), pages 223-249.
    10. Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1529-1536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.