IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2145-2159.html
   My bibliography  Save this article

Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes

Author

Listed:
  • Bargigli, Silvia
  • Raugei, Marco
  • Ulgiati, Sergio

Abstract

The thermodynamic efficiency and the environmental sustainability of selected processes that deliver gaseous energy carriers (natural gas, syngas from coal gasification, and hydrogen from steam reforming of natural gas and alkaline electrolysis) is explored by means of a multi-criteria, multi-scale approach based on four methods: material flow accounting, energy analysis, exergy analysis, and emergy synthesis.

Suggested Citation

  • Bargigli, Silvia & Raugei, Marco & Ulgiati, Sergio, 2004. "Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes," Energy, Elsevier, vol. 29(12), pages 2145-2159.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2145-2159
    DOI: 10.1016/j.energy.2004.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    3. Häyhä, Tiina & Franzese, Pier Paolo & Ulgiati, Sergio, 2011. "Economic and environmental performance of electricity production in Finland: A multicriteria assessment framework," Ecological Modelling, Elsevier, vol. 223(1), pages 81-90.
    4. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    5. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    6. Ulgiati, S. & Ascione, M. & Bargigli, S. & Cherubini, F. & Franzese, P.P. & Raugei, M. & Viglia, S. & Zucaro, A., 2011. "Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective," Ecological Modelling, Elsevier, vol. 222(1), pages 176-189.
    7. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    8. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    9. Hajjaji, Noureddine & Chahbani, Amna & Khila, Zouhour & Pons, Marie-Noëlle, 2014. "A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming," Energy, Elsevier, vol. 64(C), pages 473-483.
    10. Fahd, S. & Fiorentino, G. & Mellino, S. & Ulgiati, S., 2012. "Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept," Energy, Elsevier, vol. 37(1), pages 79-93.
    11. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2145-2159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.