IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012143.html
   My bibliography  Save this article

Biodegradations of three different rank coals by a newly isolated bacterium Bacillus sp. XK1

Author

Listed:
  • Shi, Chen
  • Liu, Xiangrong
  • Yang, Zaiwen
  • Zhao, Shun-Sheng

Abstract

Biodegradation of coal was closely related to coal rank. In this study, three kinds of coals whose coal ranks from high to low were Zhundong coal (ZDC), Hongshaquan coal (HSQC) and Heishan coal (HSC) were degraded by Bacillus sp. XK1 isolated from mine water. The degradation experiment results indicated that the degradation rate increased with the decrease of coal rank, and the highest degradation rate of HSC (low-rank coal) was 78.2 %, which was three times higher than that of ZDC (high-rank coal). The enzyme activity experiment showed that the alkaline protease and lignin peroxidase secreted by Bacillus sp. XK1 were key substances for coal biodegradation, and the alkaline protease activity and lignin peroxidase activity were all the highest in the presence of HSC, which were beneficial for coal biodegradation. The adsorption experiment found that HSC was more favorable to contact with Bacillus sp. XK1 than ZDC and HSQC. Furthermore, biodegradation products analysis suggested that with the decrease of coal rank, the contents of long chain alkanes in liquid products increased, among which the highest content of long chain alkane in liquid product of HSC was 86.98 %. The above experimental results demonstrated that biodegradation of low rank coal was an effective pathway.

Suggested Citation

  • Shi, Chen & Liu, Xiangrong & Yang, Zaiwen & Zhao, Shun-Sheng, 2024. "Biodegradations of three different rank coals by a newly isolated bacterium Bacillus sp. XK1," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012143
    DOI: 10.1016/j.energy.2024.131441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    2. Shi, Chen & Liu, Xiangrong & Wu, Hao & Zhao, Shunsheng & Yang, Zaiwen, 2023. "Enhancements of mixed surfactants on Wucaiwan coal biodegradation by Nocardia mangyaensis," Energy, Elsevier, vol. 266(C).
    3. Yin, Sudong & Tao, Xiuxiang & Shi, Kaiyi & Tan, Zhongchao, 2009. "Biosolubilisation of Chinese lignite," Energy, Elsevier, vol. 34(6), pages 775-781.
    4. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).
    5. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong & Han, Yaozhong, 2023. "Effects of oxidation on physical and chemical structure of a low rank sub-bituminous coal during the spontaneous combustion latency," Energy, Elsevier, vol. 272(C).
    6. Niu, Yu & Suo, Yonglu & Niu, Xian, 2023. "Insights into the response mechanism of Fusarium sp. NF01 during lignite biodegradation using proteomic analysis," Energy, Elsevier, vol. 278(PB).
    7. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    8. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    9. Cai, Jiawei & Wang, Ruwei & Niu, Zhiyuan & Huang, Qing & Huang, Zhuliang & Xu, Yuchan & Yang, Qiling & Liu, Zhixiang, 2023. "Evolutions of functional groups and polycyclic aromatic hydrocarbons during low temperature pyrolysis of a perhydrous bituminous coal," Energy, Elsevier, vol. 279(C).
    10. Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    2. Shi, Chen & Liu, Xiangrong & Wu, Hao & Zhao, Shunsheng & Yang, Zaiwen, 2023. "Enhancements of mixed surfactants on Wucaiwan coal biodegradation by Nocardia mangyaensis," Energy, Elsevier, vol. 266(C).
    3. Yang, Jie & Liu, Xiangrong & Yang, Zaiwen & Zhao, Shunsheng, 2023. "Biodegradation of Dananhu low-rank coal by Planomicrobium huatugouensis: Target metabolites possessing degradation abilities and their biodegradation pathways," Energy, Elsevier, vol. 276(C).
    4. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    5. Wang, Feiran & Tan, Bo & Gao, Liyang & Huang, Jiliang & Guo, Meiyan & Wang, Haiyan & Fang, Xiyang & Fu, Shuhui & Li, Tianze, 2024. "Research on the mechanism of coal adsorption of CO2 hindering oxygen," Energy, Elsevier, vol. 296(C).
    6. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    7. Song, Bobo & Zhai, Xiaowei & Ma, Teng & Wang, Bo & Hao, Le & Zhou, Yujie, 2023. "Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees," Energy, Elsevier, vol. 274(C).
    8. Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
    9. Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).
    10. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    11. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    12. Wendi Sun & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2023. "Study on the Evolution Pattern of the Aromatics of Lignin during Hydrothermal Carbonization," Energies, MDPI, vol. 16(3), pages 1-14, January.
    13. Wang, Feiran & Tan, Bo & Zan, Xiaoyan & Huang, Jiliang & Fang, Xiyang & Fu, Shuhui & Wang, Haiyan & Li, Tianze & Qi, Qingjie, 2024. "Molecular simulation study of microstructural evolution during low-temperature oxidation of coal," Energy, Elsevier, vol. 290(C).
    14. Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun & Zhao, Zujie & Wang, Pengxiang & Feng, Dongdong & Li, Pengfei, 2020. "Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate," Energy, Elsevier, vol. 208(C).
    15. Xia, Linlin & Wang, Ruwei & Huang, Qing & Cai, Jiawei & Wong, Ming Hung, 2024. "Stratigraphic distributions of biomarkers and carbon isotopes in coals constrain the Permo-Carboniferous climatic changes and floral turnovers in the north China block," Energy, Elsevier, vol. 289(C).
    16. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    17. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Cao, Zhen & Yuan, Mengfan & Sun, Liutao & Yu, Xin & Wu, Jiangquan, 2022. "Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 240(C).
    18. Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
    19. Huang, Jiliang & Tan, Bo & Gao, Liyang & Fan, Long & Shao, Zhuangzhuang & Wang, Haiyan & Qi, Qingjie, 2024. "Study on the evolution characteristics of molecular surface active sites of low-rank coal in low-temperature oxidation stage," Energy, Elsevier, vol. 294(C).
    20. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.