IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011691.html
   My bibliography  Save this article

Energy-efficiency oriented occupancy space optimization in buildings: A data-driven approach based on multi-sensor fusion considering behavior-environment integration

Author

Listed:
  • Zhou, Ying
  • Wang, Yu
  • Li, Chenshuang
  • Ding, Lieyun
  • Yang, Zhigang

Abstract

Buildings contribute significantly to global energy consumption. Optimizing internal building space layout is an essential approach for reducing energy consumption. However, proactively improving energy efficiency by building space design is still challenging requiring comprehensive consideration of complex interactions between indoor environment and occupant behavior, which is less studied previously. Considering behavior-environment integration, this study proposes a data-driven approach based on multi-sensor fusion for energy-efficiency oriented occupancy space optimization in buildings. Firstly, time series data including indoor environment and occupant behavior were collected based on multi-sensor fusion. Then, a data-integrated Convolutional Neural Network (CNN) model was developed for occupancy state classification. Based on obtained occupant schedules, space occupancy patterns of users were extracted using hierarchical clustering, and space optimization was further conducted for energy efficiency improvement. Finally, energy consumption was predicted with random forest regression after space optimization, and the impact of occupancy space optimization on energy efficiency can be evaluated. The proposed method was successfully applied in an academic office building on a campus in Wuhan, China, which helped achieve energy consumption reduction by 23.5 %. This study presents a promising path towards sustainable energy goals in building design, which serves as advanced guidance in the management of building energy performance.

Suggested Citation

  • Zhou, Ying & Wang, Yu & Li, Chenshuang & Ding, Lieyun & Yang, Zhigang, 2024. "Energy-efficiency oriented occupancy space optimization in buildings: A data-driven approach based on multi-sensor fusion considering behavior-environment integration," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011691
    DOI: 10.1016/j.energy.2024.131396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    2. Jia, Mengda & Srinivasan, Ravi S. & Raheem, Adeeba A., 2017. "From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 525-540.
    3. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    4. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    5. Uddin, Mohammad Nyme & Chi, Hung-Lin & Wei, His-Hsien & Lee, Minhyun & Ni, Meng, 2022. "Influence of interior layouts on occupant energy-saving behaviour in buildings: An integrated approach using Agent-Based Modelling, System Dynamics and Building Information Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan & Jeong, Jaewook, 2017. "Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region," Applied Energy, Elsevier, vol. 204(C), pages 1431-1443.
    7. Dervishi, Sokol & Baçi, Nerina, 2023. "Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    4. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    5. Ali Kaboli & Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Luigi Pietro Maria Colombo & Sara Perotti & Fabio Rinaldi, 2024. "Just-in-Time Morning Ramp-Up Implementation in Warehouses Enabled by Machine Learning-Based Predictive Modelling: Estimation of Achievable Energy Saving through Simulation," Energies, MDPI, vol. 17(17), pages 1-18, September.
    6. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    7. Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).
    8. Jinqiu Li & Qingqin Wang & Hao Zhou, 2020. "Establishment of Key Performance Indicators for Green Building Operations Monitoring—An Application to China Case Study," Energies, MDPI, vol. 13(4), pages 1-20, February.
    9. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    10. Hong, Taehoon & Kim, Jimin & Lee, Myeonghwi, 2018. "Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes," Applied Energy, Elsevier, vol. 228(C), pages 1707-1713.
    11. Hong, Taehoon & Kim, Jimin & Lee, Minhyun, 2019. "A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance," Energy, Elsevier, vol. 174(C), pages 823-834.
    12. Wang, Chuan'an & Pouramini, Somayeh, 2024. "Multi-objective modified satin Bowerbird optimization algorithm used for simulation-based energy consumption optimization of yearly energy demand of lighting and cooling in a test case room," Energy, Elsevier, vol. 292(C).
    13. Z. H. Ding & Y. Q. Li & C. Zhao & Y. Liu & R. Li, 2019. "Factors affecting heating energy-saving behavior of residents in hot summer and cold winter regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 193-206, January.
    14. Maria Kozlovska & Stefan Petkanic & Frantisek Vranay & Dominik Vranay, 2023. "Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration," Energies, MDPI, vol. 16(17), pages 1-23, August.
    15. Achini Shanika Weerasinghe & Eziaku Onyeizu Rasheed & James Olabode Bamidele Rotimi, 2023. "Occupants’ Decision-Making of Their Energy Behaviours in Office Environments: A Case of New Zealand," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    16. Dany Perwita Sari & Yun-Shang Chiou, 2019. "Do Energy Conservation Strategies Limit the Freedom of Architecture Design? A Case Study of Minsheng Community, Taipei, Taiwan," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    17. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    18. Tsu-Yang Wu & Haonan Li & Shu-Chuan Chu, 2023. "CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    19. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    20. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.