IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008132.html
   My bibliography  Save this article

The impact of different transportation infrastructures on urban carbon emissions: Evidence from China

Author

Listed:
  • Li, Jiajia
  • Wang, Pengxin
  • Ma, Shan

Abstract

Transport infrastructure is an important source of carbon emissions, and different transport infrastructure have varying impacts on urban carbon emissions, which has been lacking in previous research. This study selects 273 cities in China from 2005 to 2020 and applied the spatial Durbin model and mediation effect model to empirically examine the direct impact effects, spatial spillover effects, scale and regional heterogeneity, and indirect pathways of highways, high-speed railways, and urban rail on urban carbon emissions. The results shows that: (1) Overall, high-speed railways have a significant reducing effect on carbon emissions, while highways and urban rail have the opposite effect. (2) Considering spatial spillover effects, highways and high-speed railways can promote carbon emissions reduction in neighboring areas, while urban rail has the opposite effect. (3) For scale heterogeneity, urban rail can reduce carbon emissions in mega-cities, while highways and high-speed railways have the opposite effect. For regional heterogeneity, all three types of transport infrastructure can reduce carbon emissions in western cities, but increase urban carbon emissions in eastern and central regions. (4) Industrial upgrading, technological progress, and population agglomeration are all pathways through which transport infrastructure indirectly affects carbon emissions, but their effects vary for different transport infrastructure.

Suggested Citation

  • Li, Jiajia & Wang, Pengxin & Ma, Shan, 2024. "The impact of different transportation infrastructures on urban carbon emissions: Evidence from China," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008132
    DOI: 10.1016/j.energy.2024.131041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    2. Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
    3. Mohmand, Yasir Tariq & Mehmood, Fahad & Mughal, Khurrum Shahzad & Aslam, Faheem, 2021. "Investigating the causal relationship between transport infrastructure, economic growth and transport emissions in Pakistan," Research in Transportation Economics, Elsevier, vol. 88(C).
    4. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    5. Wang, Xu & Xie, Zhuan & Zhang, Xiaobo & Huang, Yiping, 2018. "Roads to innovation: Firm-level evidence from People's Republic of China (PRC)," China Economic Review, Elsevier, vol. 49(C), pages 154-170.
    6. Liu, Xiaorui & Guo, Wen & Feng, Qiang & Wang, Peng, 2022. "Spatial correlation, driving factors and dynamic spatial spillover of electricity consumption in China: A perspective on industry heterogeneity," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xiaomin & Xu, Yingzhi, 2023. "Does high-speed railway promote urban innovation? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Yu-Chen Zhang & Deng-Kui Si & Bing Zhao, 2020. "The Convergence of Sulphur Dioxide (SO 2 ) Emissions Per Capita in China," Sustainability, MDPI, vol. 12(5), pages 1-33, February.
    3. Xu, Hao & Xu, Jingxuan & Wang, Jie & Hou, Xiang, 2023. "Reduce production or increase efficiency? Hazardous air pollutants regulation, energy use, and the synergistic effect on industrial enterprises' carbon emission," Energy Economics, Elsevier, vol. 126(C).
    4. Olof Ejermo & Katrin Hussinger & Basheer Kalash & Torben Schubert, 2022. "Innovation in Malmö after the Öresund Bridge," Journal of Regional Science, Wiley Blackwell, vol. 62(1), pages 5-20, January.
    5. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    6. Carmen Callao & M. Pilar Latorre & Margarita Martinez-Núñez, 2021. "Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    7. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    8. Li, Jing & Yu, Qian & Ma, Ding, 2024. "Does China's high-speed rail network promote inter-city technology transfer? ——A multilevel network analysis based on the electronic information industry," Transport Policy, Elsevier, vol. 145(C), pages 11-24.
    9. Qiao Wang & Xiuyan Liu & Fan Zhang & Tao Hu, 2022. "Subways and the Diffusion of Knowledge: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(4), pages 60-99, July.
    10. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    11. Xiaoli Hu & Jieping Chen & Shanlang Lin, 2023. "Influence from highways’ development on green technological innovation: the case of Yangtze River economic belt in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11095-11120, October.
    12. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    13. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    14. Shuangcheng Luo & Yangli Yuan, 2023. "The Path to Low Carbon: The Impact of Network Infrastructure Construction on Energy Conservation and Emission Reduction," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    15. Emodi, Nnaemeka Vincent & Inekwe, John Nkwoma & Zakari, Abdulrasheed, 2022. "Transport infrastructure, CO2 emissions, mortality, and life expectancy in the Global South," Transport Policy, Elsevier, vol. 128(C), pages 243-253.
    16. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    17. Muhammad Zubair & Shuyan Chen & Yongfeng Ma & Xiaojian Hu, 2023. "A Systematic Review on Carbon Dioxide (CO 2 ) Emission Measurement Methods under PRISMA Guidelines: Transportation Sustainability and Development Programs," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    18. Thomas Hagedorn & Jan Wessel, 2022. "How Information on Emissions per Euro Spent can Influence Leisure Travel Decisions," Working Papers 35, Institute of Transport Economics, University of Muenster.
    19. Ping Lu & Zhihong Li & Ying Wen & Jianhui Liu & Yue Yuan & Ruiyu Niu & Yiran Wang & Liangliang Han, 2023. "Fresh insights for sustainable development: Collaborative governance of carbon emissions based on social network analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1873-1887, June.
    20. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.