Thermo-fluid dynamic modeling of a supercritical carbon dioxide compressor for waste heat recovery applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.130874
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Romei, Alessandro & Gaetani, Paolo & Persico, Giacomo, 2022. "Computational fluid-dynamic investigation of a centrifugal compressor with inlet guide vanes for supercritical carbon dioxide power systems," Energy, Elsevier, vol. 255(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiu, Xiang & Hua, Jingyang & Qian, Chenyi & Wang, Jiaxuan & Xuan, Weicheng & Yu, Binbin & Shi, Junye & Chen, Jiangping, 2024. "Experimental study on system characteristics of vapor compression refrigeration system using small-scale, gas-bearing, oil-free centrifugal compressor," Energy, Elsevier, vol. 307(C).
- Li, Yuzhe & Zhang, Enbo & Feng, Jiaqi & Zhang, Xu & Yue, Liangyuan & Bai, Bofeng, 2024. "Reduced-dimensional prediction method for the axial aerodynamic forces in the off-design operation of near-critical CO2 centrifugal compressors," Energy, Elsevier, vol. 302(C).
- Doninelli, M. & Morosini, E. & Di Marcoberardino, G. & Invernizzi, C.M. & Iora, P. & Riva, M. & Stringari, P. & Manzolini, G., 2024. "Experimental investigation of the CO2+SiCl4 mixture as innovative working fluid for power cycles: Bubble points and liquid density measurements," Energy, Elsevier, vol. 299(C).
- Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
- Liu, Yunxia & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2024. "Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review," Energy, Elsevier, vol. 297(C).
- Liang, Chengbin & Zheng, Qun & Lao, Xingsheng & Jiang, Yuting, 2024. "Enhancing robustness and accuracy of supercritical CO2 compressor performance prediction in closed Brayton cycles: A thermodynamic properties-based numerical method," Energy, Elsevier, vol. 305(C).
- Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).
- Li, Yuzhe & Feng, Jiaqi & Zhang, Xu & Bai, Bofeng, 2023. "Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle," Energy, Elsevier, vol. 284(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006467. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.