IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i5p397-409.html
   My bibliography  Save this article

Technical assessment of fuel cell operation on landfill gas at the Groton, CT, landfill

Author

Listed:
  • Spiegel, R.J
  • Preston, J.L

Abstract

This paper summarizes the results of a seminal assessment conducted on a fuel cell technology that generates electrical power from landfill waste gas. This assessment at Groton, Connecticut was the second such project conducted by the Environmental Protection Agency (EPA), the first being conducted at the Penrose Power Station near Los Angeles, California. The main objective was to demonstrate the suitability of the landfill gas energy conversion equipment at Groton with different conditions and gas compositions than at Penrose. The operation of the landfill gas cleanup system removed contaminants from the gas stream with essentially the same efficacy as at Penrose, even though the quantity and kinds of contaminants were somewhat different. The fuel cell power plant’s maximum output power improved from 137 kW at Penrose to 165 kW at Groton, due to a 31% increase in the heating value of the Groton landfill gas.

Suggested Citation

  • Spiegel, R.J & Preston, J.L, 2003. "Technical assessment of fuel cell operation on landfill gas at the Groton, CT, landfill," Energy, Elsevier, vol. 28(5), pages 397-409.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:5:p:397-409
    DOI: 10.1016/S0360-5442(02)00118-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202001184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00118-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiegel, R.J & Preston, J.L & Trocciola, J.C, 1999. "Fuel cell operation on landfill gas at Penrose Power Station," Energy, Elsevier, vol. 24(8), pages 723-742.
    2. Spiegel, Ronald J. & Trocciola, J.C. & Preston, J.L., 1997. "Test results for fuel-cell operation on landfill gas," Energy, Elsevier, vol. 22(8), pages 777-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Cinti, Giovanni & Desideri, Umberto, 2015. "SOFC fuelled with reformed urea," Applied Energy, Elsevier, vol. 154(C), pages 242-253.
    3. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    4. Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Production of hydrogen through the carbonation–calcination reaction applied to CH4/CO2 mixtures," Energy, Elsevier, vol. 32(5), pages 834-843.
    5. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    2. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    4. Spiegel, R.J & Preston, J.L & Trocciola, J.C, 1999. "Fuel cell operation on landfill gas at Penrose Power Station," Energy, Elsevier, vol. 24(8), pages 723-742.
    5. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:5:p:397-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.