IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i14p1495-1509.html
   My bibliography  Save this article

Integration of a turbine expander with an exothermic reactor loop—Flow sheet development and application to ammonia production

Author

Listed:
  • Greeff, I.L.
  • Visser, J.A.
  • Ptasinski, K.J.
  • Janssen, F.J.J.G.

Abstract

This paper investigates the direct integration of a gas turbine power cycle with an ammonia synthesis loop. Such a loop represents a typical reactor–separator system with a recycle stream and cold separation of the product from the recycle loop. The hot reaction products are expanded directly instead of raising steam in a waste heat boiler to drive a steam turbine. Two new combined power and chemicals production flow sheets are developed for the process. The flow sheets are simulated using the flow sheet simulator AspenPlus (licensed by Aspen Technology, Inc.) and compared to a simulated conventional ammonia synthesis loop. The comparison is based on energy as well as exergy analysis. It was found that the pressure ratio over the turbine expander plays an important role in optimisation of an integrated system, specifically due to the process comprising an equilibrium reaction. The inlet temperature to the reactor changes with changing pressure ratio, which in turn determines the conversion and consequently the heat of reaction that is available to produce power. In terms of the minimum work requirement per kg of product a 75% improvement over the conventional process could be obtained. The work penalty due to refrigeration needed for separation was also accounted for. Furthermore this integrated flow sheet also resulted in a decrease in exergy loss and the loss was more evenly distributed between the various unit operations. A detailed exergy analysis over the various unit operations proved to be useful in explaining the overall differences in exergy loss between the flow sheets.

Suggested Citation

  • Greeff, I.L. & Visser, J.A. & Ptasinski, K.J. & Janssen, F.J.J.G., 2003. "Integration of a turbine expander with an exothermic reactor loop—Flow sheet development and application to ammonia production," Energy, Elsevier, vol. 28(14), pages 1495-1509.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:14:p:1495-1509
    DOI: 10.1016/S0360-5442(03)00122-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00122-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Exergy assessment of single and dual pressure industrial ammonia synthesis units," Energy, Elsevier, vol. 141(C), pages 2540-2558.
    2. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    3. Greeff, I.L. & Visser, J.A. & Ptasinski, K.J. & Janssen, F.J.J.G., 2004. "Using turbine expanders to recover exothermic reaction heat—flow sheet development for typical chemical processes," Energy, Elsevier, vol. 29(12), pages 2045-2060.
    4. Greeff, Isabella L., 2022. "Using synthesis gas heat to produce work via an externally fired gas power cycle," Energy, Elsevier, vol. 239(PB).
    5. Flórez-Orrego, Daniel & Nascimento Silva, Fernanda & de Oliveira Junior, Silvio, 2019. "Syngas production with thermo-chemically recuperated gas expansion systems: An exergy analysis and energy integration study," Energy, Elsevier, vol. 178(C), pages 293-308.
    6. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:14:p:1495-1509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.