IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i12p1203-1228.html
   My bibliography  Save this article

Process analysis using the concept of intrinsic and extrinsic exergy losses

Author

Listed:
  • Chang, Hsuan
  • Chuang, Shang-Chih

Abstract

This paper introduces a two-level idealization concept and decomposes the exergy losses of processing operations into the intrinsic part and the extrinsic part. The first level idealization is the reversible operation and the second level idealization is the thermodynamic equilibrium operation. The exergy losses arising from the deviations from the first level idealization only, caused by configuration constraints, are defined as the intrinsic exergy losses. The extra exergy losses which arise from further deviations from the second level idealization, caused by transport rate limitations, are defined as the extrinsic exergy losses. Demonstrated by several example cases of different complex levels, the analysis results can pinpoint what and where to focus on for improvements: (1) design configurations or transport rate limitations, and (2) the specific locations within the operations or processes. As an example, for a de-ethanizer, the improvement measures on configuration-related and transport rate-related design conditions result in a 11.42% reduction of overall column intrinsic exergy loss and a 81.74% reduction of total individual stage extrinsic exergy loss.

Suggested Citation

  • Chang, Hsuan & Chuang, Shang-Chih, 2003. "Process analysis using the concept of intrinsic and extrinsic exergy losses," Energy, Elsevier, vol. 28(12), pages 1203-1228.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:12:p:1203-1228
    DOI: 10.1016/S0360-5442(03)00116-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00116-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. King, C. Judson, 1980. "Separation Processes, Second Edition," University of California at Berkeley, Center for Studies in Higher Education qt1b96n0xv, Center for Studies in Higher Education, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    2. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    3. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    4. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milani, Seyed M., 1989. "Non-iterative isothermal flash calculations," Energy, Elsevier, vol. 14(12), pages 889-891.
    2. Converse, A. O., 1996. "Letter to the editor on complete recycling," Ecological Economics, Elsevier, vol. 19(3), pages 193-194, December.
    3. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    4. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    5. Zebian, Hussam & Rossi, Nicola & Gazzino, Marco & Cumbo, Danila & Mitsos, Alexander, 2013. "Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column," Energy, Elsevier, vol. 49(C), pages 268-278.
    6. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    7. Nakaiwa, M. & Huang, K. & Owa, M. & Akiya, T. & Nakane, T. & Sato, M. & Takamatsu, T., 1997. "Energy savings in heat-integrated distillation columns," Energy, Elsevier, vol. 22(6), pages 621-625.
    8. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    9. Yang, Minbo & Feng, Xiao & Chu, Khim Hoong & Liu, Guilian, 2014. "Graphical method for identifying the optimal purification process of hydrogen systems," Energy, Elsevier, vol. 73(C), pages 829-837.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:12:p:1203-1228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.