IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032760.html
   My bibliography  Save this article

Technical and economic analysis of a multicarrier building energy hub concept with heating loads at different temperature levels

Author

Listed:
  • Kalina, Jacek
  • Pohl, Wiktoria

Abstract

Integration of renewable and waste energy sources, decentralisation, electrification and energy storage, are key pillars of energy transition in the district heating sector. Such a strategy can be implemented at the building level using the multi-carrier energy hub concept, which has recently gained popularity. This paper presents a technical and financial feasibility study of a building-integrated multi-carrier energy hub concept. The case study is performed for an existing large medical centre, where demand occurs simultaneously for electricity, cold, and heat at different temperature levels, including hot process water and steam. The central idea is to replace the high-exergy steam with heat from the municipal district heating network. The concept also includes the integration of heating and cooling loads, heat storage and implementation of an on-site photovoltaic (PV) power plant. The key components of the proposed hub technological structure are high-temperature heat pumps. Five alternative structures of the system configuration are examined using an hour-by-hour annual simulation. The results reveal that the proposed multi-carrier energy hub is fully operational. The project is also profitable, which results mainly from significant energy savings compared to the existing heat supply system using high-pressure steam. However, the profitability strongly depends on the system configuration, and the choice of the best option is ambiguous. The system with heat storage reaches the highest net present value (NPV) while the one without the storage results in the highest internal rate of return (IRR) due to significantly lower capital expenditures (CAPEX). In all cases, the project leads to a considerable cumulative CO2 emissions reduction, which is at the level of 1351 up to 2961 tons annually depending on system configuration.

Suggested Citation

  • Kalina, Jacek & Pohl, Wiktoria, 2024. "Technical and economic analysis of a multicarrier building energy hub concept with heating loads at different temperature levels," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032760
    DOI: 10.1016/j.energy.2023.129882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    2. Ahmadisedigh, Hossein & Gosselin, Louis, 2019. "Combined heating and cooling networks with waste heat recovery based on energy hub concept," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Kalina, Jacek, 2023. "The quest for game changers - Review of new trends and innovations in the design of large-scale energy systems," Energy, Elsevier, vol. 277(C).
    4. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Pesola, Aki, 2023. "Cost-optimization model to design and operate hybrid heating systems – Case study of district heating system with decentralized heat pumps in Finland," Energy, Elsevier, vol. 281(C).
    6. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    7. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    8. Nicholas Gurieff & Donna Green & Ilpo Koskinen & Mathew Lipson & Mark Baldry & Andrew Maddocks & Chris Menictas & Jens Noack & Behdad Moghtaderi & Elham Doroodchi, 2020. "Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    10. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    11. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    12. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pipicelli, Michele & Muccillo, Massimiliano & Gimelli, Alfredo, 2023. "Influence of the control strategy on the performance of hybrid polygeneration energy system using a prescient model predictive control," Applied Energy, Elsevier, vol. 329(C).
    2. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    6. Jianhong Hao & Ting Huang & Yi Sun & Xiangpeng Zhan & Yu Zhang & Peng Wu, 2024. "Optimal Prosumer Operation with Consideration for Bounded Rationality in Peer-to-Peer Energy Trading Systems," Energies, MDPI, vol. 17(7), pages 1-22, April.
    7. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    8. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    9. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    10. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    11. Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
    12. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    15. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Pang, Xinfu & Wang, Yibao & Yu, Yang & Liu, Wei, 2024. "Optimal scheduling of a cogeneration system via Q-learning-based memetic algorithm considering demand-side response," Energy, Elsevier, vol. 300(C).
    17. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    18. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    19. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    20. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.