IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031730.html
   My bibliography  Save this article

Supramolecular porous-based phase change material based on cucurbit[7]uril complexed amino-montmorillonite

Author

Listed:
  • Wang, Huihui
  • Zou, Changjun
  • Hu, Yujie
  • Xiong, Tingting
  • Tang, Wenyue

Abstract

Under high-temperature conditions, drill bits, downhole guiding tools, etc. are susceptible to failure, so capturing and storing the heat energy generated is critical for efficient drilling. In this work, a porous material of cucurbit[7]uril (CB[7]) complexed amino-montmorillonite (NH2-MT) was proposed for the first time to encapsulate eutectic nitrate (NIT) to alleviate the high-temperature crisis in the drilling process. The results showed that the structural stability and anti-leakage performance of the supramolecular composite phase change materials (MAC@NIT) were significantly improved by the addition 0.25 g of CB[7], and the adsorption of Na+ and K+ by CB[7] was in the form of monolayer adsorption. The phase change temperature and structure of MAC@NIT-2 remained stable after 200 cycles, and the maximum change of latent heat of solid-liquid was only 3.96 J/g. The special cavity structure of CB[7] further enhanced the thermal conductivity of the MAC@NIT, up to 0.48 W/m·k, which was 20 % higher than the MT@NIT. The addition of MAC@NIT improves the stability of the drilling fluids by 15 %. Additionally, the temperature of the drilling fluids could be reduced by 4.3 °C at a low solid-solid latent heat value. In summary, this study provides ideas for developing ultra-deep oil and gas resources efficiently.

Suggested Citation

  • Wang, Huihui & Zou, Changjun & Hu, Yujie & Xiong, Tingting & Tang, Wenyue, 2024. "Supramolecular porous-based phase change material based on cucurbit[7]uril complexed amino-montmorillonite," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031730
    DOI: 10.1016/j.energy.2023.129779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    2. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    3. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    2. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    3. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    4. Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
    5. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
    6. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    7. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    8. Sara Walsh & Jack Reynolds & Bahaa Abbas & Rachel Woods & Justin Searle & Eifion Jewell & Jonathon Elvins, 2020. "Assessing the Dynamic Performance of Thermochemical Storage Materials," Energies, MDPI, vol. 13(9), pages 1-12, May.
    9. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Wang, Pengfei & Huo, Xiangyan & Wang, Ruzhu & Li, Tingxian, 2022. "Enhanced thermal conductivity and adsorption rate of zeolite 13X adsorbent by compression-induced molding method for sorption thermal battery," Energy, Elsevier, vol. 240(C).
    10. Liang, Yuntao & Wang, Ting & He, Zhenglong & Sun, Yong & Song, Shuanglin & Cui, Xinfeng & Cao, Yingjiazi, 2023. "High thermal storage capacity phase change microcapsules for heat transfer enhancement through hydroxylated-silanized nano-silicon carbide," Energy, Elsevier, vol. 285(C).
    11. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    12. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    13. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    14. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    15. Guo, Pengfei & Qiu, Zhengsong & Zang, Xiaoyu & Zhong, Hanyi & Zhao, Xin & Zhang, Yubin & Mu, Tingbo, 2024. "Epoxy resin microencapsulated by complex coacervation as physical-chemical synergetic lost circulation control material," Energy, Elsevier, vol. 293(C).
    16. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
    18. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    19. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.