IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029250.html
   My bibliography  Save this article

Analysis of an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators for dryer application

Author

Listed:
  • Jing, Siqi
  • Chen, Qi
  • Yu, Jianlin

Abstract

In this paper, an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators (EFVIC) for heat pump dryer applications is proposed based on a basic flash tank vapor injection heat pump cycle (FVIC). An ejector is introduced to recover the expansion work of the system, and a high temperature evaporator is added to utilize the ejector's entrainment ability to reduce the irreversible loss caused by lower temperature difference. The performance improvements of EFVIC are evaluated through energy analysis, exergy analysis and comparisons with FVIC. The results indicate that the volumetric heating capacity and heating coefficient of performance of EFVIC with R1234yf are improved by 66.99 % and 18.88 % compared with those of FVIC using R1234yf, respectively. In addition, the presented cycle achieves better exergy efficiency because the exergy destruction proportion of expansion valves in EFVIC is 75.98 % lower than that in FVIC. Furthermore, the compressor has the highest exergy destruction among all components for EFVIC, accounting for 33.22 % of the total exergy destruction, hence it has the greatest optimization potential. The advantages of the presented cycle performance reveal its energy saving characteristics and application potential in heat pump dryer.

Suggested Citation

  • Jing, Siqi & Chen, Qi & Yu, Jianlin, 2024. "Analysis of an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators for dryer application," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029250
    DOI: 10.1016/j.energy.2023.129531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    2. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    3. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    4. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    5. Redón, A. & Navarro-Peris, E. & Pitarch, M. & Gonzálvez-Macia, J. & Corberán, J.M., 2014. "Analysis and optimization of subcritical two-stage vapor injection heat pump systems," Applied Energy, Elsevier, vol. 124(C), pages 231-240.
    6. Chen, Qi & Yu, Mengqi & Yan, Gang & Yu, Jianlin, 2022. "Thermodynamic analyses of a modified ejector enhanced dual temperature refrigeration cycle for domestic refrigerator/freezer application," Energy, Elsevier, vol. 244(PA).
    7. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    8. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    9. Wu, Di & Hu, Bin & Wang, R.Z., 2018. "Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants," Renewable Energy, Elsevier, vol. 116(PA), pages 775-785.
    10. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    11. Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
    3. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    4. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.
    5. Zou, Lingeng & Yu, Jianlin, 2024. "4E assessment of ejector-enhanced R290 heat pump cycle with a sub-cooler for cold region applications," Energy, Elsevier, vol. 298(C).
    6. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    7. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    8. Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
    9. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    10. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    11. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    13. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    14. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    15. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    16. Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
    17. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    18. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    19. Poulet, P. & Outbib, R., 2015. "Energy production for dwellings by using hybrid systems based on heat pump variable input power," Applied Energy, Elsevier, vol. 147(C), pages 413-429.
    20. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.