IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028773.html
   My bibliography  Save this article

Adaptability comparison and application assessment of various bioenergy grasses on different marginal lands in China

Author

Listed:
  • Hou, Wei
  • Yi, Zili

Abstract

To understand the effects of different marginal land and environments on the growth, biomass yield, quality, and theoretical ethanol yield of different bioenergy grasses, and to compare the adaptability of different bioenergy grasses. This study was conducted in four representative marginal lands located in Chongqing, Liuyang, Nanyang, and Beijing. The agronomic traits, cell wall compositions, and theoretical alcohol yield of nine energy grasses containing 22 accessions were compared. The effects of environmental factors on biomass yield, quality, and theoretical ethanol yield of different accessions were evaluated via parametric and non-parametric statistics and AMMI analysis, and the stability and adaptability of all accessions were also compared. The results revealed that there were significant differences in biomass yield, quality, and theoretical alcohol yield among different species at the same trial site, and the same species also showed large differences between trial sites. Grasses exhibited divergent adaptability across trial sites, such as Saccharum arundinaceum and Miscanthus floridulus were sensitive to low temperatures and could not overwinter normally in Beijing. The biomass yield of Miscanthus sacchariflorus declined as the latitude decreased. Miscanthus × giganteus, Miscanthus lutarioriparius × sinensis, and Panicum virgatum exhibited greater resistance to environmental changes, indicating superior stability and environmental adaptability.

Suggested Citation

  • Hou, Wei & Yi, Zili, 2023. "Adaptability comparison and application assessment of various bioenergy grasses on different marginal lands in China," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028773
    DOI: 10.1016/j.energy.2023.129483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    2. Szulczewski, Wiesław & Żyromski, Andrzej & Jakubowski, Wojciech & Biniak-Pieróg, Małgorzata, 2018. "A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1787-1795.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    2. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    3. Carlos S. Ciria & Marina Sanz & Juan Carrasco & Pilar Ciria, 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    4. Jan Weger & Jaroslav Knápek & Jaroslav Bubeník & Kamila Vávrová & Zdeněk Strašil, 2021. "Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers," Agriculture, MDPI, vol. 11(1), pages 1-21, January.
    5. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    6. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.
    7. Stanisław Rolbiecki & Małgorzata Biniak-Pieróg & Andrzej Żyromski & Wiesława Kasperska-Wołowicz & Barbara Jagosz & Piotr Stachowski & Daniel Liberacki & Ewa Kanecka-Geszke & Hicran A. Sadan & Roman Ro, 2021. "Effect of Forecast Climate Changes on Water Needs of Giant Miscanthus Cultivated in the Kuyavia Region in Poland," Energies, MDPI, vol. 14(20), pages 1-13, October.
    8. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.