IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024313.html
   My bibliography  Save this article

Analysis of internal energy and mass loss rate of fuel with water sublayer at different initial temperatures

Author

Listed:
  • Li, Cong
  • Xu, Wenbo
  • Wang, Yuqing
  • Jin, Yanke
  • Wei, Shanyang
  • Yang, Rui

Abstract

This study primarily investigates fuel spill fire accidents occurring on water. A series of pool fire experiments with water sublayer at different initial temperatures (5, 10, 20, 40, 60, and 80 °C) and fuel thicknesses (0.5, 1.0, 1.5, and 2.0 cm) is conducted. The mass loss rate (MLR), and temperatures of fuel and water sublayer were measured, and the internal energy of fuel and water sublayer was analyzed. Results showed that the division of combustion stage depends on the fuel thickness and initial temperatures. The temperatures of fuel and water sublayer exhibited a gradient distribution at different heights. The fuel energy flux q˙fuel and water sublayer energy flux q˙water initially increased and then decreased. The peak values of q˙fuel, q˙water, Q˙fuel, and Q˙water were negatively correlated with the initial temperature at the same fuel thickness. The MLR of the stable stage was increasing with the thicker fuel thickness and higher initial temperature. Finally, a dimensionless correlation as a function of the geometric and thermodynamic properties of the pool and fuel was introduced to predict the mean MLR, and the experimental data presented a good correlation with the predictions. The conclusions would be benefited to understand the phenomenon and quantitative characteristics of pool fire accidents on water.

Suggested Citation

  • Li, Cong & Xu, Wenbo & Wang, Yuqing & Jin, Yanke & Wei, Shanyang & Yang, Rui, 2023. "Analysis of internal energy and mass loss rate of fuel with water sublayer at different initial temperatures," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024313
    DOI: 10.1016/j.energy.2023.129037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Jianan & Liu, Haifeng & Zhu, Hongyan & Cai, Yuqing & Wang, Hu & Yao, Mingfa, 2023. "Energy analysis and optimization of iso-octane and n-heptane combustion process," Energy, Elsevier, vol. 262(PB).
    2. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
    2. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    3. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    4. Wang, Yuxin & Fu, Gui & Lyu, Qian & Wu, Yali & Jia, Qinsong & Yang, Xiaoyu & Li, Xiao, 2022. "Reform and development of coal mine safety in China: An analysis from government supervision, technical equipment, and miner education," Resources Policy, Elsevier, vol. 77(C).
    5. Proskuryakova, Liliana N. & Ermolenko, Georgy V., 2019. "The future of Russia’s renewable energy sector: Trends, scenarios and policies," Renewable Energy, Elsevier, vol. 143(C), pages 1670-1686.
    6. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Goran STANKOVIĆ & Stojan PETELIN & Peter VIDMAR & Marko PERKOVIČ, 2017. "Influence Of Implementation Of Technologically Advanced Evacuation Models On The Process Of Decreasing The Risk During Accidents In An Lng Terminal," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(1), pages 25-38, March.
    8. Juanpera, M. & Domenech, B. & Ferrer-Martí, L. & Garzón, A. & Pastor, R., 2021. "Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    10. Spada, Matteo & Paraschiv, Florentina & Burgherr, Peter, 2018. "A comparison of risk measures for accidents in the energy sector and their implications on decision-making strategies," Energy, Elsevier, vol. 154(C), pages 277-288.
    11. Kamenopoulos, Sotiris N. & Tsoutsos, Theocharis, 2015. "Assessment of the safe operation and maintenance of photovoltaic systems," Energy, Elsevier, vol. 93(P2), pages 1633-1638.
    12. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    13. Boccard, Nicolas, 2018. "Safety along the energy chain," Energy, Elsevier, vol. 150(C), pages 1018-1030.
    14. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    15. Young Jin Han & Qian Qian Zhao & Won Young Yun, 2022. "Optimal inspection and replacement strategy for 145 kV gas-insulated switchgear," Journal of Risk and Reliability, , vol. 236(2), pages 339-347, April.
    16. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    17. Jylhä, Kirsti & Kämäräinen, Matti & Fortelius, Carl & Gregow, Hilppa & Helander, Juho & Hyvärinen, Otto & Johansson, Milla & Karppinen, Ari & Korpinen, Anniina & Kouznetsov, Rostislav & Kurzeneva, Eka, 2018. "Recent meteorological and marine studies to support nuclear power plant safety in Finland," Energy, Elsevier, vol. 165(PA), pages 1102-1118.
    18. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    19. Alice Freiberg & Julia Scharfe & Vanise C. Murta & Andreas Seidler, 2018. "The Use of Biomass for Electricity Generation: A Scoping Review of Health Effects on Humans in Residential and Occupational Settings," IJERPH, MDPI, vol. 15(2), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.