IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022478.html
   My bibliography  Save this article

Integrating flexibility and energy local markets with wholesale balancing responsibilities in the context of renewable energy communities

Author

Listed:
  • Mello, J.
  • Villar, J.

Abstract

Prosumers can organize themselves in collective self-consumption (CSC) structures and renewable energy communities (RECs) to share energy they produce locally. In addition, through their contracted balancing responsible party (BRP), i.e., retailer and aggregator, they could become flexibility providers for system services to solve, for example, local grid constraints. Since CSC and REC structures are progressively being regulated in many countries, local energy markets (LEMs) and local flexibility markets (LFMs) to be developed with these structures should find the way to comply with existing CSC rules to settle energy transactions and flexibility activation, both, locally and with the wholesale markets (WSMs) settlement, and the existing barriers and regulatory improvements should be identified to allow future implementations. Indeed, the integration of local and WSMs is still a matter of development, demanding innovative solutions, one of the main issues being, for example, the impact of the flexibility activation by one BRP into another BRP’s expected delivery commitment in the WSM. This work proposes innovative designs for LEM and LFM based on common CSC rules of existing regulations, and a conceptual approach to integrate them together and with the WSM balancing responsibilities of the BRPs involved, identifying existing regulatory barriers. While many LEMs in the literature operate as WSMs, with future markets and delivery commitments for prosumers, we propose the use of a post-delivery LEM that can be cleared even after the delivery of energy, which strongly simplifies prosumers participation avoiding the need of these a priori unrealistic commitments. The business model, the main roles involved, and the contractual framework to connect the BRPs while allowing prosumers to freely contract the BRP of their choice for both energy supply and flexibility provision are described and can serve as a guide for future regulatory improvement of the common regulatory frameworks.

Suggested Citation

  • Mello, J. & Villar, J., 2023. "Integrating flexibility and energy local markets with wholesale balancing responsibilities in the context of renewable energy communities," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022478
    DOI: 10.1016/j.energy.2023.128853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    2. ., 2023. "Land use and transport designed to meet social needs," Chapters, in: How Great Cities Happen, chapter 4, pages 82-114, Edward Elgar Publishing.
    3. Carsten Putzke & Chunyu Guo & Vincent Plisson & Martin Kroner & Thibault Chervy & Matteo Simoni & Pim Wevers & Maja D. Bachmann & John R. Cooper & Antony Carrington & Naoki Kikugawa & Jennifer Fowlie , 2023. "Layered metals as polarized transparent conductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijay, Rohit & Mathuria, Parul, 2024. "Common TSO-DSO market framework with no upfront priority to utilize DER flexibility," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    2. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    3. Desogus, Eleonora & Grosso, Daniele & Bompard, Ettore & Lo Russo, Stefano, 2023. "Modelling the geopolitical impact on risk assessment of energy supply system: The case of Italian crude oil supply," Energy, Elsevier, vol. 284(C).
    4. Carlo Schmitt & Felix Gaumnitz & Andreas Blank & Olivier Rebenaque & Théo Dronne & Arnault Martin & Philippe Vassilopoulos & Albert Moser & Fabien Roques, 2021. "Framework for Deterministic Assessment of Risk-Averse Participation in Local Flexibility Markets †," Energies, MDPI, vol. 14(11), pages 1-34, May.
    5. Gazafroudi, Amin Shokri & Khorasany, Mohsen & Razzaghi, Reza & Laaksonen, Hannu & Shafie-khah, Miadreza, 2021. "Hierarchical approach for coordinating energy and flexibility trading in local energy markets," Applied Energy, Elsevier, vol. 302(C).
    6. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    9. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    10. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Gržanić, Mirna & Capuder, Tomislav, 2023. "Collaboration model between Distribution System Operator and flexible prosumers based on a unique dynamic price for electricity and flexibility," Applied Energy, Elsevier, vol. 350(C).
    12. Potenciano Menci, Sergio & Valarezo, Orlando, 2024. "Decoding design characteristics of local flexibility markets for congestion management with a multi-layered taxonomy," Applied Energy, Elsevier, vol. 357(C).
    13. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    14. Stig Ødegaard Ottesen & Martin Haug & Heidi S. Nygård, 2020. "A Framework for Offering Short-Term Demand-Side Flexibility to a Flexibility Marketplace," Energies, MDPI, vol. 13(14), pages 1-17, July.
    15. Andreas Zeiselmair & Simon Köppl, 2021. "Constrained Optimization as the Allocation Method in Local Flexibility Markets," Energies, MDPI, vol. 14(13), pages 1-21, June.
    16. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    17. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    19. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    20. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.