Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128806
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lesmana, Luthfan Adhy & Aziz, Muhammad, 2023. "Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage," Energy, Elsevier, vol. 262(PA).
- Kirttayoth Yeranee & Yu Rao, 2022. "A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS)," Energies, MDPI, vol. 15(23), pages 1-29, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohamad Ziad Saghir & Mohammad Yahya, 2024. "Convection Heat Transfer and Performance Analysis of a Triply Periodic Minimal Surface (TPMS) for a Novel Heat Exchanger," Energies, MDPI, vol. 17(17), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
- Hu, Kaibin & Wang, Xiaobo & Zhong, Shengquan & Lu, Cheng & Yu, Bocheng & Yang, Li & Rao, Yu, 2024. "Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches," Energy, Elsevier, vol. 289(C).
- Zhang, Tao & Zhang, Kaifei & Liu, Fei & Zhao, Miao & Zhang, David Z., 2024. "Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study," Applied Energy, Elsevier, vol. 358(C).
More about this item
Keywords
Conjugate heat transfer; Design variable; Flow resistance; Heat exchangers; Triply periodic minimal surface;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.