IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223011313.html
   My bibliography  Save this article

A data-driven optimization framework for industrial demand-side flexibility

Author

Listed:
  • Manna, Carlo
  • Lahariya, Manu
  • Karami, Farzaneh
  • Develder, Chris

Abstract

Securing profits while offering industrial demand-side flexibility in both energy and reserve markets is critical to ensure the profitability of energy-intensive industrial plants to make available their flexible assets in the electricity markets and hence accelerating the energy transition. Proposing efficient bidding strategies for simultaneous participation in the energy and reserve market is challenging since it requires the integration of different market mechanisms in a single optimization problem (combining energy and reserve markets), as well as an accurate mathematical model of industrial processes from which to obtain energy flexibility. Often, such mathematical models are either not available or are described through complex simulators, making the design of a computationally efficient bidding strategy a complicated task.

Suggested Citation

  • Manna, Carlo & Lahariya, Manu & Karami, Farzaneh & Develder, Chris, 2023. "A data-driven optimization framework for industrial demand-side flexibility," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011313
    DOI: 10.1016/j.energy.2023.127737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianchi, F.R. & Bosio, B. & Conte, F. & Massucco, S. & Mosaico, G. & Natrella, G. & Saviozzi, M., 2023. "Modelling and optimal management of renewable energy communities using reversible solid oxide cells," Applied Energy, Elsevier, vol. 334(C).
    2. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    3. Bott, Andreas & Janke, Tim & Steinke, Florian, 2023. "Deep learning-enabled MCMC for probabilistic state estimation in district heating grids," Applied Energy, Elsevier, vol. 336(C).
    4. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    5. Pandžić, H. & Dvorkin, Y. & Carrión, M., 2018. "Investments in merchant energy storage: Trading-off between energy and reserve markets," Applied Energy, Elsevier, vol. 230(C), pages 277-286.
    6. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    7. Fabian Borst & Nina Strobel & Thomas Kohne & Matthias Weigold, 2021. "Investigating the Electrical Demand-Side Management Potential of Industrial Steam Supply Systems Using Dynamic Simulation," Energies, MDPI, vol. 14(6), pages 1-20, March.
    8. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    9. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    10. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    11. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    6. Halbrügge, Stephanie & Schott, Paul & Weibelzahl, Martin & Buhl, Hans Ulrich & Fridgen, Gilbert & Schöpf, Michael, 2021. "How did the German and other European electricity systems react to the COVID-19 pandemic?," Applied Energy, Elsevier, vol. 285(C).
    7. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    8. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    9. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    10. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    11. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    12. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    15. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    16. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    17. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    18. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    19. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    20. Hong, Jun & Johnstone, Cameron & Torriti, Jacopo & Leach, Matthew, 2012. "Discrete demand side control performance under dynamic building simulation: A heat pump application," Renewable Energy, Elsevier, vol. 39(1), pages 85-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.