IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008198.html
   My bibliography  Save this article

Net-load forecasting of renewable energy systems using multi-input LSTM fuzzy and discrete wavelet transform

Author

Listed:
  • Mokarram, Mohammad Jafar
  • Rashiditabar, Reza
  • Gitizadeh, Mohsen
  • Aghaei, Jamshid

Abstract

This paper represents a new framework to forecast electricity power net-load in renewable energy systems. Estimating electricity power net-load with high accuracy affects economic well-being, stability, and security of power networks. Despite this, large nonlinear variations make its estimation difficult and complicated. In this paper, a new, simple, robust, and straightforward method is proposed to predict signals with volatile characteristics to satisfy this need. This framework combines deep learning of the multi-input LSTM network type with fuzzy system and discrete wavelet transforms. Wavelet-based transforms provide insight into hidden details and aid in forecasting points with high chaos. Furthermore, technical indicators provide a way to determine the trend and momentum of data and to select the optimal time frame for estimation. Finally, the real case of Austrian data is selected, and the electricity power net-load is estimated. According to the results, the proposed framework can forecast the electricity power net-load with 97.7% accuracy. Furthermore, the forecast accuracy is improved to 99.5% by using wavelet transforms and fuzzy system simultaneously in the forecasting process.

Suggested Citation

  • Mokarram, Mohammad Jafar & Rashiditabar, Reza & Gitizadeh, Mohsen & Aghaei, Jamshid, 2023. "Net-load forecasting of renewable energy systems using multi-input LSTM fuzzy and discrete wavelet transform," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008198
    DOI: 10.1016/j.energy.2023.127425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    2. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    3. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    4. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
    5. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    2. Saini, Priyesh & Parida, S.K., 2024. "A novel probabilistic gradient boosting model with multi-approach feature selection and iterative seasonal trend decomposition for short-term load forecasting," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    2. Li, Ye & Chen, Yiyan & Lean, Hooi Hooi, 2024. "Geopolitical risk and crude oil price predictability: Novel decomposition ensemble approach based ternary interval number series," Resources Policy, Elsevier, vol. 92(C).
    3. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    4. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    6. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    8. Jha, Nimish & Kumar Tanneru, Hemanth & Palla, Sridhar & Hussain Mafat, Iradat, 2024. "Multivariate analysis and forecasting of the crude oil prices: Part I – Classical machine learning approaches," Energy, Elsevier, vol. 296(C).
    9. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    10. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    11. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    14. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    15. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    16. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    17. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Ibrahim M. Hezam, 2023. "An IVIF-Distance Measure and Relative Closeness Coefficient-Based Model for Assessing the Sustainable Development Barriers to Biofuel Enterprises in India," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    19. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    20. Li, Tao, 2022. "Analyst's stock views and revision actions," Finance Research Letters, Elsevier, vol. 44(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.