Hybrid data-driven method for low-carbon economic energy management strategy in electricity-gas coupled energy systems based on transformer network and deep reinforcement learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127183
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
- Liang, Tao & Chai, Lulu & Cao, Xin & Tan, Jianxin & Jing, Yanwei & Lv, Liangnian, 2024. "Real-time optimization of large-scale hydrogen production systems using off-grid renewable energy: Scheduling strategy based on deep reinforcement learning," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
- Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
- Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
- Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).
- George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Heat pumps in combined heat and power systems," Energy, Elsevier, vol. 76(C), pages 989-1000.
- Zhang, Ning & Sun, Qiuye & Yang, Lingxiao, 2021. "A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling," Energy, Elsevier, vol. 215(PB).
- Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
- Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
- Andersen, Anders N. & Østergaard, Poul Alberg, 2019. "Analytic versus solver-based calculated daily operations of district energy plants," Energy, Elsevier, vol. 175(C), pages 333-344.
- Liu, Wen & Klip, Diederik & Zappa, William & Jelles, Sytse & Kramer, Gert Jan & van den Broek, Machteld, 2019. "The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands," Energy, Elsevier, vol. 189(C).
- Cuisinier, Étienne & Lemaire, Pierre & Penz, Bernard & Ruby, Alain & Bourasseau, Cyril, 2022. "New rolling horizon optimization approaches to balance short-term and long-term decisions: An application to energy planning," Energy, Elsevier, vol. 245(C).
- Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
- Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
- Stojiljković, Mirko M. & Ignjatović, Marko G. & Vučković, Goran D., 2015. "Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization," Energy, Elsevier, vol. 92(P3), pages 420-434.
- Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
- Yang, Xiaohui & Leng, Zhengyang & Xu, Shaoping & Yang, Chunsheng & Yang, Li & Liu, Kang & Song, Yaoren & Zhang, Liufang, 2021. "Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method," Renewable Energy, Elsevier, vol. 172(C), pages 408-423.
- Santos, Maria Izabel & Uturbey, Wadaed, 2018. "A practical model for energy dispatch in cogeneration plants," Energy, Elsevier, vol. 151(C), pages 144-159.
- Franziska Flachsbarth & Marion Wingenbach & Matthias Koch, 2021. "Addressing the Effect of Social Acceptance on the Distribution of Wind Energy Plants and the Transmission Grid in Germany," Energies, MDPI, vol. 14(16), pages 1-18, August.
More about this item
Keywords
Deep reinforcement learning; Neural network; Energy management system; Integrated energy system; Low-carbon;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005777. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.