IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i8p797-810.html
   My bibliography  Save this article

Field study using the ground as a heat sink for the condensing unit of an air conditioner in Thailand

Author

Listed:
  • Khedari, Joseph
  • Permchart, Watchara
  • Pratinthong, Naris
  • Thepa, Sirichai
  • Hirunlabh, Jongjit

Abstract

This paper reports on an investigation of the feasibility of using earth to absorb the heat normally rejected into the atmosphere by the condensing unit of a conventional air conditioner. To this end, a copper tube of about 67 m in length was buried at a depth of 1 m underground, where the temperature was constant at about 27°C year round. The copper coil of an air type condenser is about 22 m long. For the buried condenser, the R-22 refrigerant requirement was 5.8 kg as compared with 1.2 kg for the air condenser system. It was found that with this modified condensing unit, the coefficient of performance (COP) was much higher than that of a conventional one: it varied between 7.1 (daytime) and 8.1 (nighttime), compared to 2.8 and 3.1, respectively. The ground temperature near the buried copper coil did not increase, thus demonstrating the ability of the soil to dissipate the absorbed heat into the ground. Consequently, there is a high potential for contributing to environmental protection by using the ground as a heat sink. The elimination of the condensing fan is an additional advantage of the buried condenser system.

Suggested Citation

  • Khedari, Joseph & Permchart, Watchara & Pratinthong, Naris & Thepa, Sirichai & Hirunlabh, Jongjit, 2001. "Field study using the ground as a heat sink for the condensing unit of an air conditioner in Thailand," Energy, Elsevier, vol. 26(8), pages 797-810.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:8:p:797-810
    DOI: 10.1016/S0360-5442(01)00036-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00036-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    2. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    3. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    5. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    6. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:8:p:797-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.