IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i2p137-159.html
   My bibliography  Save this article

Energy and material flow models for the US steel industry

Author

Listed:
  • Andersen, Jan Peter
  • Hyman, Barry

Abstract

We develop calibrated models of energy and material consumption patterns in the US steel industry, starting with an energy end-use model based on 1994 Manufacturing Energy Consumption Survey (MECS) data. Then process-step models of material and energy use are developed and calibrated against the energy end-use model and data from the US Commerce Department and the American Iron and Steel Institute. These models can serve as benchmarks for current steelmaking operations and as base cases for simulating changes in steelmaking energy utilization and waste streams spurred by economics, regulations, or technology innovations.

Suggested Citation

  • Andersen, Jan Peter & Hyman, Barry, 2001. "Energy and material flow models for the US steel industry," Energy, Elsevier, vol. 26(2), pages 137-159.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:2:p:137-159
    DOI: 10.1016/S0360-5442(00)00053-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544200000530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(00)00053-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraldo, Luis & Hyman, Barry, 1995. "Energy end-use models for pulp, paper, and paperboard mills," Energy, Elsevier, vol. 20(10), pages 1005-1019.
    2. Giraldo, Luis & Hyman, Barry, 1996. "An energy process-step model for manufacturing paper and paperboard," Energy, Elsevier, vol. 21(7), pages 667-681.
    3. Hyman, Barry & Reed, Tracy, 1995. "Energy intensity of manufacturing processes," Energy, Elsevier, vol. 20(7), pages 593-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    2. Zhijun Feng & Wen Zhou & Qian Ming, 2019. "Embodied Energy Flow Patterns of the Internal and External Industries of Manufacturing in China," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    3. Fumin Ma & Gregory M. P. O’Hare & Tengfei Zhang & Michael J. O’Grady, 2015. "Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems," Energies, MDPI, vol. 8(10), pages 1-21, October.
    4. Hasanbeigi, Ali & Arens, Marlene & Cardenas, Jose Carlos Rojas & Price, Lynn & Triolo, Ryan, 2016. "Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 127-139.
    5. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    6. Ozalp, Nesrin & Hyman, Barry, 2007. "Allocation of energy inputs among the end-uses in the US petroleum and coal products industry," Energy, Elsevier, vol. 32(8), pages 1460-1470.
    7. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    8. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    9. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    10. Liu, Liru & Aye, Lu & Lu, Zhongwu & Zhang, Peihong, 2006. "Effect of material flows on energy intensity in process industries," Energy, Elsevier, vol. 31(12), pages 1870-1882.
    11. Chen, Demin & Li, Jiaqi & Wang, Zhao & Lu, Biao & Chen, Guang, 2022. "Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liru & Aye, Lu & Lu, Zhongwu & Zhang, Peihong, 2006. "Effect of material flows on energy intensity in process industries," Energy, Elsevier, vol. 31(12), pages 1870-1882.
    2. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    3. Ozalp, Nesrin & Hyman, Barry, 2007. "Allocation of energy inputs among the end-uses in the US petroleum and coal products industry," Energy, Elsevier, vol. 32(8), pages 1460-1470.
    4. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
    5. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    6. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    7. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    8. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    9. Al-Ghandoor, A. & Phelan, P.E. & Villalobos, R. & Jaber, J.O., 2010. "Energy and exergy utilizations of the U.S. manufacturing sector," Energy, Elsevier, vol. 35(7), pages 3048-3065.
    10. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    11. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    12. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
    13. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:2:p:137-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.