IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics036054422202984x.html
   My bibliography  Save this article

Renewable source uncertainties effects in multi-carrier microgrids based on an intelligent algorithm

Author

Listed:
  • Ma, Jinpeng
  • Wu, Shengbin
  • Raad, Erfan Ahli

Abstract

High volatility and unpredictable behavior of renewable energy sources provide various challenges in the operation of power systems with maintaining the system's reliability. To solve the challenges of grid-connected renewable energy sources, microgrids (MGs) can play an essential role due to their tuning capability and flexibility. The fast growth of power-to-gas technology causes to support renewable energy integration and transforms the extra renewable generation to combined normal gas at a suitable time. The optimal type, size, and commissioning year of the accessible distributed energy resources through the economic application of nominated resources are evaluated to be applied in the suggested multi-carrier microgrid. This study focuses on the simultaneous operation of multi-carrier MGs and their equipment as an optimization problem. Small-scale energy sources and load demand in MGs are modeled to reduce costs of exchange between the main grid and MGs, as well as the load balance between MGs and load demand. Given that it is difficult to solve the desired problem considering various constraints, the developed meta-heuristic whale optimization algorithm (WOA) is used along with adaptive weighting coefficients and a local search operator. Moreover, this model investigates the unstable behavior of loads, renewables, and electricity prices using the probabilistic load flow method (PLF), considering multiple carriers simultaneously to match the real world. In this paper, MGs with multiple-carriers exchange energy with the upstream grid. The energy exchange between MGs is also considered. The results of simulations performed on the grid consisting of three interconnected multi-carrier MGs confirmed the effectiveness of the suggested model. Obtained numerical results prove the validity of the suggested multi-carrier microgrid expansion planning issue by economic, environmental, and technical points.

Suggested Citation

  • Ma, Jinpeng & Wu, Shengbin & Raad, Erfan Ahli, 2023. "Renewable source uncertainties effects in multi-carrier microgrids based on an intelligent algorithm," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s036054422202984x
    DOI: 10.1016/j.energy.2022.126098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202984X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Shoujun & Abedinia, Oveis, 2021. "Investigation in economic analysis of microgrids based on renewable energy uncertainty and demand response in the electricity market," Energy, Elsevier, vol. 225(C).
    2. Zakernezhad, Hamid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Optimal resilient operation of multi-carrier energy systems in electricity markets considering distributed energy resource aggregators," Applied Energy, Elsevier, vol. 299(C).
    3. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    4. Oveis Abedinia & Mehdi Bagheri, 2021. "Power Distribution Optimization Based on Demand Respond with Improved Multi-Objective Algorithm in Power System Planning," Energies, MDPI, vol. 14(10), pages 1-18, May.
    5. Langenmayr, Uwe & Wang, Weimin & Jochem, Patrick, 2020. "Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic," Applied Energy, Elsevier, vol. 280(C).
    6. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    2. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    3. Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
    4. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    5. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    6. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    7. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    8. Armioun, Majid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Siano, Pierluigi, 2023. "Optimal scheduling of CCHP-based resilient energy distribution system considering active microgrids' multi-carrier energy transactions," Applied Energy, Elsevier, vol. 350(C).
    9. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    10. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    12. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    13. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    14. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Ghoreishi, Niloofar & Catalão, João P.S., 2020. "Optimal power management of dependent microgrid considering distribution market and unused power capacity," Energy, Elsevier, vol. 200(C).
    17. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    18. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    19. Yan, Zhongzhen & Zhu, Xinyuan & Chang, Yiming & Wang, Xianglong & Ye, Zhiwei & Xu, Zhigang & Fars, Ashk, 2023. "Renewable energy effects on energy management based on demand response in microgrids environment," Renewable Energy, Elsevier, vol. 213(C), pages 205-217.
    20. Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s036054422202984x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.