IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029632.html
   My bibliography  Save this article

Numerical analysis of passive safety injection driven by natural circulation in floating nuclear power plant

Author

Listed:
  • Wei, Tianyi
  • Zhang, Biao
  • Wang, Shuguang
  • Tan, Sichao
  • Li, Dongyang
  • Qiao, Shouxu

Abstract

The traditional energy supply paradigm has been difficult to meet the demands of ocean resources development. As a combination of small nuclear reactors and offshore platforms, the floating nuclear power plant(FNPP) can be well used in offshore energy supply. Considering passive safety injection of FNPP will be deeply affected by the ocean environment, the present study brings a CFD customization model to assess the injection process. The additional inertial force is implanted into the momentum equation to simulate motion conditions. The combination of coordinate transformation and grid traversal is used to output critical parameters. Therefore, it can be seen the overall evolution process and the local flow characteristics of natural circulation intuitively apart from quantitative analysis, making up for the deficiency of the previous analysis code. Results suggested the injection process can be divided into several stages. Affected by ocean conditions, the flow rate in FNPP will decrease with periodic fluctuation after a linear increase, so the safety injection can be completed in 180 s under static conditions while needing more than 240 s under rolling. However, although additional acceleration weakens the driving force of natural circulation, liquid sloshing and disturbed flow will make the reactor core cool more effectively.

Suggested Citation

  • Wei, Tianyi & Zhang, Biao & Wang, Shuguang & Tan, Sichao & Li, Dongyang & Qiao, Shouxu, 2023. "Numerical analysis of passive safety injection driven by natural circulation in floating nuclear power plant," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029632
    DOI: 10.1016/j.energy.2022.126077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Kailun & Meng, Zhaoming & Yan, Changqi & Fan, Guangming & Ding, Tao, 2018. "Experimental study on start-up and steady state characteristics of passive residual heat removal system for 2 MW molten salt reactor," Energy, Elsevier, vol. 147(C), pages 826-838.
    2. Yoon, Wonjun & Kim, Jonghyun & Chung, Chungsoo & Park, Jungsoo, 2022. "Numerical study on prediction of icing phenomena in intake system of diesel engine: Operating conditions with low-to-middle velocity of inlet air," Energy, Elsevier, vol. 248(C).
    3. Han, Ou & Li, Angui & Dong, Xinwei & Li, Jianwei, 2021. "Determination of HVAC meteorological parameters for floating nuclear power stations (FNPSs) in the area of China sea and its vicinity," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhiwei & He, Yanping & Duan, Zhongdi & Huang, Chao & Liu, Shiwen & Xue, Hongxiang, 2023. "Passive mitigation of condensation-induced water hammer by converging-diverging structures for offshore nuclear power plants," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiwei & He, Yanping & Duan, Zhongdi & Huang, Chao & Liu, Shiwen & Xue, Hongxiang, 2023. "Passive mitigation of condensation-induced water hammer by converging-diverging structures for offshore nuclear power plants," Energy, Elsevier, vol. 282(C).
    2. Wang, Linna & Chen, Chuqi & Chen, Lekang & Li, Zheng & Zeng, Wenjie, 2023. "A coordinated control methodology for small pressurized water reactor with steam dump control system," Energy, Elsevier, vol. 282(C).
    3. Leonid Plotnikov, 2023. "Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning," Mathematics, MDPI, vol. 11(8), pages 1-16, April.
    4. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    5. Ding, Tao & Meng, Zhaoming & Chen, Kailun & Fan, Guangming & Yan, Changqi, 2020. "Experimental study on thermal stratification in water tank and heat transfer characteristics of condenser in water-cooled passive residual heat removal system of molten salt reactor," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.