IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222024331.html
   My bibliography  Save this article

Study on a coalbed methane liquefaction system based on thermoacoustic refrigeration method

Author

Listed:
  • Wang, Chenghong
  • Shen, Qie
  • Zhang, Jie
  • Qiao, Xin
  • Yu, Hongyuan
  • Shen, Keyi
  • Sun, Daming

Abstract

Recovery of coalbed methane (CBM) is significant for the safe production of coal mines, environmental protection, and clean energy supply. A novel CBM liquefaction process composed of a looped three-stage thermoacoustic engine and three pulse tube coolers (PTCs) is proposed. Each PTC is connected to one thermoacoustic engine unit by bypass. Potential liquefaction processes using thermoacoustically driven PTCs are proposed and studied numerically. The operating parameters of the system are globally optimized by performing genetic algorithm procedures, using specific power consumption (SPC) as the objective function. Additionally, exergy analyses are conducted on the main components of the system to reveal the potential directions for improvement. It is found that a three-stage thermoacoustically driven PTCs is an appropriate configuration considering the overall efficiency and geometric compactness of the system. The optimized SPC of the system is 0.58 kWh·Nm−3, which is comparable to that of the traditional liquefiers. The overall exergy efficiency of the system is 36.25%. Total exergy loss of the three PTCs is 4.978 kW, accounting for 80% of that of the system. Having the advantages of being driven by heat instead of electricity, safe operation, compact structure, and high efficiency, the proposed liquefaction process is promising for small-scale gas reserves, especially for CBM.

Suggested Citation

  • Wang, Chenghong & Shen, Qie & Zhang, Jie & Qiao, Xin & Yu, Hongyuan & Shen, Keyi & Sun, Daming, 2023. "Study on a coalbed methane liquefaction system based on thermoacoustic refrigeration method," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024331
    DOI: 10.1016/j.energy.2022.125547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Ting & Lin, Wensheng & Gu, Anzhong & Gu, Min, 2010. "Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling," Applied Energy, Elsevier, vol. 87(7), pages 2142-2147, July.
    2. Xu, Xiongwen & Liu, Jinping & Jiang, Chuanshuo & Cao, Le, 2013. "The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process," Applied Energy, Elsevier, vol. 102(C), pages 1127-1136.
    3. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    4. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    5. Xu, Jingyuan & Zhang, Limin & Hu, Jianying & Wu, Zhanghua & Bi, Tianjiao & Dai, Wei & Luo, Ercang, 2016. "An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas," Energy, Elsevier, vol. 101(C), pages 427-433.
    6. Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Shaojie & Wang, Changwei & Si, Junting & Zhang, Liang & Tian, Feng & Peng, Shouqing & Li, Zhonghui, 2024. "The effect of temperature and ultrasonic power on the microstructure evolution of coal modified by clean fracturing fluid: An experimental study," Energy, Elsevier, vol. 306(C).
    2. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chenghong & Sun, Daming & Shen, Qie & Duan, Yuanyuan & Huang, Xiaoxue, 2024. "A re-liquefaction process of LNG boil-off gas using an improved Kapitsa cycle: Eliminating the BOG compressor," Energy, Elsevier, vol. 304(C).
    2. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Duan, Yuanyuan, 2024. "Optimization of coalbed methane liquefaction process based on parallel nitrogen reverse Brayton cycle under varying methane contents and liquefaction ratios," Energy, Elsevier, vol. 293(C).
    3. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    4. Ning, Jinghong & Sun, Zhili & Dong, Qiang & Liu, Xinghua, 2019. "Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG," Energy, Elsevier, vol. 172(C), pages 36-44.
    5. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    6. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    7. Li, Yong & Xie, Gongnan & Sunden, Bengt & Lu, Yuanwei & Wu, Yuting & Qin, Jiang, 2018. "Performance study on a single-screw compressor for a portable natural gas liquefaction process," Energy, Elsevier, vol. 148(C), pages 1032-1045.
    8. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    9. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    10. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    11. Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
    12. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    13. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
    14. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    15. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
    16. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    17. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    18. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    19. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    20. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.